• Title/Summary/Keyword: natural river sand

Search Result 112, Processing Time 0.022 seconds

An Experimental Study for Recycling of the Waste PET Bottle as a Fine Aggregate for Lightweight Concrete (폐 PET 병을 경량콘크리트용 잔골재로 재활용하기 위한 실험적 연구)

  • Choi Yun-Wang;Moon Dae-Joong;Jung Moon-Young;Cho Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.79-87
    • /
    • 2004
  • The qualify of lightweight aggregate made from waste PET bottle(WPLA) and the workability, the unit weight and strength property of concrete with WPLA were investigated for the purpose of recycling the waste PET bottles as lightweight concrete fine aggregate. This study indicated a good result that WPLA should be replaced with less than $50\%$ of natural fine aggregate. When WPLA was replaced with $50\%$ of natural fine aggregate, the specific gravity and water absorption of mixed fine aggregate were greatly reduced about 23 and $75\%$ respectively in comparison with those of river sand. The quality of WPLA affected on the properties of lightweight aggregate concrete. The workability of fresh concrete with WPLA(WPLAC) was improved with increasing the replacement ratio of WPLA and water cement ratio. Slump increasing ratio of the former showed about $45 {\~} 120\%$ because that a specific gravity of fine aggregate was decreased from 2.6 to 1.7. The unit weight of concrete with $75\%$ WPLA was decreased about $17\%$ in comparison with that of control concrete. Furthermore, the compressive strength of concrete with 25 and $50 \%$ WPLA at the age of 28 days increased higher than 30 MPa regardless with water cement ratio (W/C=45, 49 and $53\%$) of this study. Specific strength of concrete with $25\%$ WPLA, $15.11{\times}10^3 MPa{\cdot}m^3/kg$, was higher than that of contro concrete in water cement ratio of $49\%$. The compressive strength-splitting tensile strength ratio and compressive strength-modulus of elasticity ratio of WPLAC were similar to that of nomal lightweight aggregate concrete. This results showed a good estimation that WPLA will be able to recycled as a fine aggregate for lightweight concrete.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.