• Title/Summary/Keyword: natural reaction

Search Result 1,743, Processing Time 0.028 seconds

Limitations of the Transition State Variation Model. Part 8. Dual Reaction Channels for Solvolyses of 3,4-Dimethoxybenzenesulfonyl Chloride

  • Koo, In-Sun;Kwon, Eun-Ju;Choi, Ho-June;Yang, Ki-Yull;Park, Jong-Keun;Lee, Jong-Pal;Lee, Ikc-Hoon;Bentley, T. William
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2377-2381
    • /
    • 2007
  • Solvolyses of 3,4-dimethoxybenzenesulfonyl chloride (DSC) in water, D2O, CH3OD, and in aqueous binary mixtures of acetone, acetonitrile, 1,4-dioxane, ethanol, methanol, and 2,2,2-trifluoroethanol (TFE) have been investigated at 25.0 oC. Kinetic solvent isotope effects (KSIE) in water and in methanol and product selectivities in alcohol-water mixtures are also reported. The Grunwald-Winstein plot of first-order rate constants for the solvolyic reaction of DSC with YCl shows marked dispersions into separated lines for various aqueous mixtures. With use of the extended Grunwald-Winstein equation, the l and m values obtained are 1.12 and 0.58 respectively for the solvolyses of DSC. The relatively large magnitude of l is consistent with substantial nucleophilic solvent assistance. From Grunwald-Winstein plots the rate data are dissected approximately into contributions from two competing reaction channels. This interpretation is supported for alcohol-water mixtures by the trends of product selectivities, which show a maximum for ethanol-water mixtures. From the KSIE of 1.45 in methanol, it is proposed that the reaction channel favored in methanolwater mixtures and in all less polar media is general-base catalysed and/or is possibly (but less likely) an addition-elimination pathway. Also, the KISE value of 1.35 for DSC in water is expected for SN2-SN1 processes, with minimal general base catalysis, and this mechanism is proposed for solvolyses in the most polar media.

Photochromic Behavior and Its Stability of a New Bifunctional Dye Composed of Spirobenzopyran and a Cinnamoyl Moiety

  • Shen Kaihua;Kim Jae Hong;Kim Go Woon;Cho Min Ju;Lee Sang Kyu;Choi Dong Hoon
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.180-186
    • /
    • 2005
  • A novel bifunctional dye composed of spirobenzopyran and a cinnamoyl moiety was prepared and its photochromic behavior under the illumination of monochromatic UV light was investigated. This colorless bifunctional dye exhibits typical photochromism in both the film and in solution, through the structural and geometrical transformation from spirobenzopyran to merocyanine accompanied by a photocrosslinking reaction between the cinnamoyl moieties. Two kinds of photochemical reaction were selectively achieved by irradiation with monochromatic UV light at wavelengths of 275 and 365 nm, respectively. The effect of the selective photochemical reaction on the photochromism of the dye and its decaying behavior was investigated.

Conversion of Potassium Chloride to Potassium Nitrate by the Reaction of Nitrogen Dioxide (Potassium Chloride로부터 Nitrogen Dioxide 반응에 의한 Potassium Nitrate로의 전환)

  • Yim, Going
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.129-136
    • /
    • 1996
  • The direct conversion of solid potassium chloride to solid potassium nitrate by the reaction of the chloride with gaseous nitrogen dioxide is suggested for the preparation of potassium nitrate. Thermodynamic calculations indicate that the free energy change is favorable at ordinary temperatures and that the reaction is exothermic. Experiments are described in which it was found that the reaction takes place at ordinary temperatures in the presence of a small amount of water with good yield. Nitrosyl chloride is produced simultaneously.

  • PDF

Amperometric Determination of Urea Using Enzyme-Modified Carbon Paste Electrode

  • Yang, Jae-Kyeong;Ha, Kwang-Soo;Baek, Hyun-Sook;Lee, Shim-Sung;Seo, Moo-Lyong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1499-1502
    • /
    • 2004
  • An amperometric biosensor based on carbon paste electrodes (CPEs) for the determination of urea was constructed by enzyme (urease/GL-DH)-modified method. Urea was hydrolyzed to ${NH_4}^+$ by catalyzing urease onto the enzyme-modified electrode surface in sample solution. In the presence of ${\alpha}$-ketoglutarate and reduced nicotinamide adenine dinucleotide(NADH), a liberated ${NH_4}^+$ produce to L-glutamate and $NAD^+$ by Lglutamate dehydrogenase (GL-DH). After the chemical reaction was proceeded, the electrochemical reaction was occurred that an excess of the NADH was oxidized to $NAD^+$. The oxidation current of NADH was monitored at +1.10 volt vs. Ag/AgCl. An optimum conditions of biosensor were investigated: The optimum pH range for catalyzed hydrolysis reaction of urea was pH 7.0-7.4. The linear response range and detection limit were $2.0\;{\times}\;10^{-5}{\sim}2.0\;{\times}\;10^{-4}M\;and\;5.0\;{\times}\;10^{-6}M$, respectively. Another physiological species did not interfere, except L-ascorbic acid.

An Analysis on the Reaction of Crushed Aggregates (국내 쇄석골재의 화학반응성 분석)

  • 이장화;김성욱;최일섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.97-102
    • /
    • 1993
  • In the country, due to short comings of natural aggregates of good quality, it is common to use crushed stones. However, the investigation has not been done on the chemical reaction of crushed stones. This study tested and analyzed the aggregate chemical reaction by Petrographic Examination(ASTM C 295),Chemical Metho(ASTM C 289) and Mortar-Bar Method (ASTM C 227). As a result, most of test aggregates didn't show any reaction but many have common deleterious mineral. Therefore, there exists the possibility of chemical reaction in petrographic point of view.

  • PDF

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

A Study on Decomposition in Synthesis of $BaTiO_3$ by Soild-solid Reaction ($BaTiO_3$고상반응 합성시 분해 반응의 고찰)

  • Kim, Jong-Ock;Lim, Dae-Young
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.85-93
    • /
    • 1991
  • In solid reaction of the eqimolecular mixture of $BaCO_3$ and $TiO_2$, $CO_2$ generates by the following reaction ; $BaCO_3 + TiO_2\longrightarrow$ $BaTiO_3 + CO_2$ The solid reaction is studied as the kinetics of decomposition reaction with DTA-TG. The results are as follows. 1. $BaCO_3$ with is coexisted with $TiO_2$ decompose at lower temperature than pure $BaCO_3$. The reason is decreasing free eneragy of products. 2. Carter's equation is more important than Jander's equation in solid reaction of $BaCO_3$ decomposi-tion. The activation energy obtained by Carte r's equation is 42.8 Kcal/mol.

Regeneration of Pinusolide from Its 17-Nor-8-oxo Derivative

  • Han, Byung-Hoon;Song, Wan-Jin;No, Kwnag-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.5 no.2
    • /
    • pp.107-109
    • /
    • 1997
  • For metabolic study of pinusolide, a naturally occurring platelet activating factor antagonist, a synthetic method for preparation of radiolabeled pinusolide was studied. Pinusolide was first oxidized with $OsO_4/NaIO_4 $to 17-nor-8-oxo compound (2), which was subsequently converted to pinusolide by treatment with the Lombardo reagent $(Zn/CH_2Br_2/TiCI_4)$. The Wittily reaction was unsuccessful in the latter carbonyl methylenation of 2.

  • PDF