• Title/Summary/Keyword: natural polyacetylene

Search Result 13, Processing Time 0.027 seconds

Time Course Change in Composition of Ginseng Polyacetylenes (인삼(人蔘) polyacetylene 조성(組成)의 경시변화(經時變化))

  • Han, Byung-Hoon;Song, Byung-Joon;Ro, Hwan-Sung
    • Korean Journal of Pharmacognosy
    • /
    • v.7 no.3
    • /
    • pp.191-193
    • /
    • 1976
  • It has been known that ginseng extract contains several polyacetylene components. But we found only two polyacetylene components in the freshly prepared ginseng extract. Long-term preservation of ginseng or ginseng extract produced many artifact polyacetylenes. The ratio of artifact/genuine polyacetylene was determined by TLC-densitometry on long-term preserved ginseng samples. The results indicated that the ratio was increased proportionally with the span of preservation.

  • PDF

Coumarins and a Polyacetylene from the Roots of Angelica purpuraefolia

  • Min, Byung-Sun
    • Natural Product Sciences
    • /
    • v.12 no.3
    • /
    • pp.129-133
    • /
    • 2006
  • Four coumarins (1-4) and one polyacetylene (5) were isolated from the roots of Anglica purpuraefolia Chung (Umbelliferae) through repeated column chromatography. Four coumarins, isoscopoletin (1), oxypeucedanin hydrate (2), arnottinin (3) and isokhellactone (4), and a polyacetylene, (+)-9(Z), 17-octadecadience-12,14-diyne-1,11,16-triol (5), were identified by spectroscopic analysis including two dimensional NMR and mass. These compounds were examined for their anti-complement activity against the classical pathway of the complement system. However, compounds 1-5 were inactive in this assay system.

The 1320-nm Excited FT-Raman Spectra of Lightly Iodine-Doped trans-Polyacetylene

  • Kim, Jin-Yeol;Yukio Furukawa;Akira Sakamoto;Mitsuo Tasumi
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.286-290
    • /
    • 2002
  • The FT-Raman spectra of trans-polyacetylene films doped lightly with iodine were obtained with the 1320-nm laser line. The observed Raman bands are attributed to positively charged domains created by acceptor doping. The observed Raman wavenumbers of the V$_2$, (CC stretch), V$_3$, and V$_4$ bands (mixed of CC stretch and CH in-plan bending) of iodine-doped form are slightly higher than those of the corresponding bands of pristine trans-polyacetylene, whereas the contrary is the case for V$_1$, and (C=C stretch) of iodine-doped form. In particular, these upshifts of the V$_2$ and V$_3$ bands are distinguished from the downshifts of these bands in donor doping. The origin of doping induced Raman bands is discussed in terms of solitons and polarons.

Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum

  • Wang, Bang-Yan;Yang, Xue-Qiong;Hu, Ming;Shi, Li-Jiao;Yin, Hai-Yue;Wu, Ya-Mei;Yang, Ya-Bin;Zhou, Hao;Ding, Zhong-Tao
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.770-774
    • /
    • 2020
  • Background: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods: Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results: A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 µM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion: Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.

Quantitative Analyses of the Functional Constituents in SanYangSam and SanYangSanSam

  • Shin, Il-Soo;Jo, Eunbi;Jang, Ik-Soon;Yoo, Hwa-Seung
    • Journal of Pharmacopuncture
    • /
    • v.20 no.4
    • /
    • pp.274-279
    • /
    • 2017
  • Objective: SanYangSam and SanYangSanSam are traditional Korea-medical herbs that are grown from Panax ginseng C.A. Meyer. In our previous studies, we found that the functional compounds in SanYangSam and SanYangSanSam were different and depended on the type and the cultivation environment of ginseng. This study aimed to profile the functional constituents in SanYangSam and SanYangSanSam. Methods: To profile the functional aspects of the many compounds that have therapeutic activities in SanYangSam and SanYangSanSam extracts, we used liquid chromatography tandem mass spectrometry and quadrupole orthogonal acceleration time-of-flight mass spectrometry. Results: A total of four major compounds were detected; two of which were the natural flavonoids kaempferol and quercetin. Among others, two polyacetylene compounds, including panaxydol and panaxynol, were detected. Conclusion: In this study, we found that panaxydol, one of the polyacetylene constituents of ginseng, is a candidate anti-cancer agent in SanYangSam and SanYangSanSam pharmacopuncture. In addition, we found that the panaxydol levels in the SanYangSanSam extract were over 30 times those in the SanYangSam extract.

The Production of Anti-cancer Substances by in vitro Grown Cultures of Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Park, Kyung-Hwa;Kim, Yong-Hae;Yoon, Eui-Soo;Kang, Tae-Jin;Park, Kwang-Tae
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.46-57
    • /
    • 1999
  • Ginseng(Panax ginseng C.A. Meyer) is important medicinal plant but requires 4-year cultivation for root harvest because of slow growth. In contrast, ginseng callus and hairy roots grow vigorously and may Produce the same or more biologically active compounds for human health than natural ginseng roots. Therefore, ginseng callus and hairy roots can be used for commercial purposes. Polyacetylene, one of anti-cancer compounds in ginseng, was not detected in the callus cultured on the medium containing 2, 4-B, but cells derived from the callus growth was excellent, The ginseng calli cultured on the medium containing 2mg11 CPA and 0.05mg/1 BA was grown vigorously and produced panaxydol, one of ginseng polyacetylene. The biosynthesis of polyacetylene in callus was not affected by addition of NAA and sucrose in media. The SH medium was better than the MS medium for ginseng callus growth and biosynthesis of panaxydol. Another ginseng anti-cancer compounds, ginsenoside-Rg$_3$, Rh$_1$and Rh$_2$ were detected in ginseng hairy roots by heat treatment. Those of Panax ginseng were obtained after root disks of three-year old roots were infected with Agrobacterium rhizogenes Rl000 $A_4$T in dark condition after one month of culture. The optimum growth of hairy roots was achieved in the culture of 1/2 MS liquid medium in dark(22$^{\circ}C$) under 60 rpm gyratory shaking. Hairy roots grew well in 5 ι Erlenmeyer flasks, 1ι roller drums, 10ι jar-fermenters, and especially in 20ι air-lift .culture vessels. All heat treatments had remarkably different ginsenoside contents. Eleven ginsenosides were determined in heat treatment, eight in freeze dried hairy roots. Contents of ginsenoside-Rbl , Rb2, Rc, Rd. Re, Rf, and Rg$_1$tested in all heat treatments were less than those of freeze dried hairy roots. Contents of glnsenoside-Rg$_2$ in heat treatment for 1 hour at 105$^{\circ}C$ was 4.92mg/g dry wt, 3.9 times higher than 1.27 mg/g dry wt of freeze dried hairy roots. The optimum condition of heat treatment for the production of ginsenoside-Rg$_3$and Rhl was 2 hours at 105$^{\circ}C$, and ginsenoside content was 2.58mg/g dry wt and 3.62mg/g dry wt, respectively. The production of ginsenoside-Rh2 was the highest in heat treatment for 2 hours at 105$^{\circ}C$ among treatments examined, and ginsenoside-Rh$_2$content was 1.08mg/g dry wt.

  • PDF

Length- and parity-dependent electronic states in one-dimensional carbon atomic chains on C(111)

  • Kim, Hyun-Jung;Oh, Sang-Chul;Kim, Ki-Seok;Zhang, Zhenyu;Cho, Jun-Hyung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.56-56
    • /
    • 2010
  • Using first-principles density-functional theory calculations, we find dramatically different electronic states in the C chains generated on the H-terminated C(111) surface, depending on their length and parity. The infinitely long chain has $\pi$ electrons completely delocalized over the chain, yielding an equal C-C bond length. As the chain length becomes finite, such delocalized $\pi$ electrons are transformed into localized ones. As a result, even-numbered chains exhibit a strong charge-lattice coupling, leading to a bond-alternated structure, while odd-numbered chains show a ferrimagnetic spin ordering with a solitonlike structure. These geometric and electronic features of infinitely and finitely long chains are analogous to those of the closed (benzene) and open (polyacetylene) chains of hydrocarbons, respectively.

  • PDF

ACAT Inhibition of Polyactylenes from Gymnaster koraiensis

  • Jung, Hyun-Ju;Hung, Tran-Manh;Na, Min-Kyun;Min, Byung-Sun;Kwon, Byoung-Mog;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.15 no.2
    • /
    • pp.110-113
    • /
    • 2009
  • Acyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes cholesterol esterification and plays important roles in intestinal absorption of cholesterol, hepatic production of lipoproteins and accumulation of cholesteryl ester within macrophages and smooth muscle cells. In our study, eight polyacetylenes (1 - 8), were isolated from the roots of Gymnaster koraiensis, and their chemical structures were identified on the basis of spectroscopic analysis and mass. Compound 2 with the (10S)-15,16-epoxy group in skeleton strongly inhibited ACAT enzyme with $IC_{50}$ value of 35.8 ${\mu}g$/mL, meanwhile the other compounds displayed significant inhibition of ACAT enzyme with the $IC_{50}$ values from 45.5 to 55.1 ${\mu}g$/mL.