• Title/Summary/Keyword: natural period ratio

Search Result 275, Processing Time 0.032 seconds

Identifying torsional eccentricity in buildings without performing detailed structural analysis

  • Tamizharasi, G.;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.283-295
    • /
    • 2022
  • Seismic design codes permit the use of Equivalent Static Analysis of buildings considering torsional eccentricity e with dynamic amplification factors on structural eccentricity and some accidental eccentricity. Estimation of e in buildings is not addressed in codes. This paper presents a simple approximate method to estimate e in RC Moment Frame and RC Structural Wall buildings, which required no detailed structural analysis. The method is validated by 3D analysis (using commercial structural analysis software) of a spectrum of building. Results show that dynamic amplification factor should be applied on torsional eccentricity when performing Response Spectrum Analysis also. Also, irregular or mixed modes of oscillation arise in torsionally unsymmetrical buildings owing to poor geometric distribution of mass and stiffness in plan, which is captured by the mass participation ratio. These irregular modes can be avoided in buildings of any plan geometry by limiting the two critical parameters (normalised torsional eccentricity e/B and Natural Period Ratio 𝜏 =T𝜃/T, where B is building lateral dimension, T𝜃 uncoupled torsional natural period and T uncoupled translational natural period). Suggestions are made for new building code provisions.

Inelastic Displacement Ratios for Smooth Hysteretic System Considering Characteristic Period of Earthquakes (지진의 특성주기를 고려한 완만한 곡선형 이력거동시스템의 비탄성 변위비)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In order to predict inelastic displacement response without nonlinear dynamic analysis, the equal displacement rule can be used for the structures with longer natural periods than the characteristic period, $T_g$, of earthquake record. In the period range longer than $T_g$, peak displacement responses of elastic systems are equal or larger than those of inelastic systems. In the period range shorter than $T_g$, opposite trend occurs. In the equal displacement rule, it is assumed that peak displacement of inelastic system with longer natural period than $T_g$ equals to that of elastic system with same natural period. The equal displacement rule is very useful for seismic design purpose of structures with longer natural period than $T_g$. In the period range shorter than $T_g$, the peak displacement of inelastic system can be simply evaluated from the peak displacement of elastic system by using the inelastic displacement ratio, which is defined as the ratio of the peak inelastic displacement to the peak elastic displacement. Smooth hysteretic behavior is more similar to actual response of real structural system than a piece-wise linear hysteretic behavior such as bilinear or stiffness degrading behaviors. In this paper, the inelastic displacement ratios of the smooth hysteretic behavior system are evaluated for far-fault and near-fault earthquakes. The simple formula of inelastic displacement ratio considering the effect of $T_g$ is proposed.

Wind Induced Vibration Design for High-rise buildings through Control of Natural Period (주기 조절을 이용한 고층 건물의 풍응답 조절 설계)

  • 김지은;차성희;서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.43-51
    • /
    • 2004
  • As the slenderness ratio of a high-rise building increases, the lateral load resisting system for the building is more often determined by serviceability design criteria. In serviceability design, the maximum drift and the level of vibration are controlled not to exceed the design criteria. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. Development of practical design method for wind induced vibration is required. Generally, wind induced acceleration responses are depending on several variables such as the weight density of a building, damping ratio, the natural period, and etc.. All parameters except the natural period or frequency are usually out of reach for structural engineers, then the wind acceleration response may be proportioned to the natural period. Therefore, in this paper, a wind induced vibration design method based on frequency control technique for high-rise is proposed. The method is applied to vibration design of a 25-story office building for performance evaluation.

  • PDF

Characteristics of Harbor Resonance in Donghae Harbor (Part 1. Field Measurement) (동해항(東海港)의 부진동(副振動) 특성(特性)(1. 현장관측(現場觀測)))

  • Jeong, Weon Mu;Jung, Kyung Tae;Chae, Jang Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.173-183
    • /
    • 1993
  • Four wave gauges of pressure type were installed for about one month(1992. 2~3) for the analysis of wave agitations induced by the intrusion of long-period incident waves inside and outside of Donghae Harbor. Helmholtz natural period and second peak period of seiche in Donghae Harbor are found to be approximately 17.1 and 5.5 minutes from the spectral analysis of measured long-period wave data. Amplification ratio at Helmholtz natural period reaches about 10 which is five times as lagre as that of Youngil Bay, but wave amplitudes ill harbor were about 10 em during the measurement period which are relatively small.

  • PDF

A Review of Ecological and Natural Map Grades and Public Appeals in Korea

  • Wooseok Oh;Jangsam Cho;Kihyun Park;Hyosun Leem;Eui-Jeong Ko;Changhoon You;Jeong-Cheol Kim;Hye-Yeon Yoon
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.141-145
    • /
    • 2023
  • This study surveyed the changes in the proportion of Ecological and Natural Map (ENM) grades in Korea, the distribution ratio of ENM 1st-grade areas by region, and the current status of regional public appeals for the five-year period from 2017 to 2021. The nationwide changes in ENM grades revealed an increase in 1st-grade, 3rd-grade, and separately managed areas but a decrease in the ratio of 2nd-grade areas. Nationwide, Gangwon had the highest distribution ratio of 1st-grade areas, at 46.77%, while Gwangju had the lowest, at 0.05%. In the five-year study period, 383 appeals concerning ENM grades were received and processed. Gangwon had the greatest number of appeals, with 96, while Sejong had the fewest, with 1. A significant correlation was observed between the distribution ratio of 1st-grade areas and public appeals.

Radioactivity concentrations of natural radionuclides in fine dust of Jeju, Korea

  • Chung-Hun Han;Sohyeon Lim;Hee-Jung Im
    • Analytical Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.191-197
    • /
    • 2023
  • Radioactivity concentrations for natural radionuclides were determined from fine dust samples collected in Jeju, Korea according to atmospheric events (Asian dust, haze, fog-mist, and non-event), and radium equivalent activity was calculated. The mean atmospheric radioactivity concentrations for 238U, 232Th, and 40K in 127 fine dust samples were 0.49, 0.24, and 7.23 µBq m-3, respectively, and the radium equivalent activity was 33.25 Bq kg-1. The mean concentrations of 238U and 232Th in the fine dust during the Asian dust period were 1.31 and 1.60 µBq m-3, respectively, above the global average, while the values for the other three atmospheric events were lower. The ratio of 232Th/238U radioactivity during the Asian dust period was 1.22, higher than the ratio for the other three atmospheric events.

Natural Period Formula of a Reinforced Concrete Shear Wall Structure Considering Flange Wall Effect (플랜지형 벽체 효과를 고려한 철근 콘크리트 전단벽 구조물의 고유주기식)

  • Roh, Ji Eun;Kim, Joong Ho;Hur, Moo-Won;Park, Tae Won;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.55-62
    • /
    • 2018
  • In this study, natural period formular is presented for a RC shear wall structure with H-, T-, and L-shaped wall sections. The natural period formular proposed by Goel and Chopra and adopted in ASCE 7-10 was modified by using the ratio of the flange and web wall area. The natural periods of structures with H-shaped wall were numerically obtained, the results indicated that the ASCE 7-10 could not consider the natural period variation according to the length of the flange wall, but the proposed formula could do. Especially, ASCE 7-10 estimated much longer periods than eigenvalue analysis, and this implies that conservative seismic design is difficult. The periods by eigenvalue analysis exist between the upper and lower bounds given by the proposed formula, and conservative design is possible by using the proposed lower bound value. In order to verity the effectiveness of the proposed method, actual residential buildings with various types of flange walls are considered. Ambient vibration tests, eigenvalue analyses, and nonlinear dynamic analyses were conducted and the periods were compared with the values by ASCE 7-10 and the proposed formula. The results showed that the proposed formula could estimate more accurately the periods than ASCE 7-10.

A Study on the Change of Blood Constituents During Growth Period of Velvet Antler in Korean Spotted Deer (꽃사슴의 녹용 성장기간 중 혈액성분의 변화에 관한 연구)

  • Kim, M.H.;Kim, Y.S.;Jeon, B.T.;Moon, S.H.
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.3 s.134
    • /
    • pp.263-268
    • /
    • 2003
  • This study was carried out to evaluate the change of blood constituents during the growth of antlers in Korean spotted deer (Cervus nippon). Samples of blood, obtained from the jugular vein of twenty five deer (3 to 6 year-old males) were taken in 10 days interval from casting to cutting of antler and were analyzed the blood parameters. Total-protein concentration in blood serum showed significantly differences during growth period of velvet antler (p<0.01), and it had similar tendency for total protein and albumin concentration, but albumin concentration was about 40-45% of total protein concentration. Urea and creatinine concentration was tended to inverse proportion, and it was almost 30:1 for ratio of urea and creatinine concentration. The concentration of total protein, creatinine, and uric acid concentration in blood during growth period of velvet antler was similarly increased and decreased but urea concentration was opposed. The concentration of total-bilirubin and direct-bilirubin at casting was higher than those at other period(P<0.05).

Effects of Isolation Period Difference and Beam-Column Stiffness Ratio on the Dynamic Response of Reinforced Concrete Buildings

  • Chun, Young-Soo;Hur, Moo-Won
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.439-451
    • /
    • 2015
  • This study analyzed the isolation effect for a 15-story reinforced concrete (RC) building with regard to changes in the beam-column stiffness ratio and the difference in the vibration period between the superstructure and an isolation layer in order to provide basic data that are needed to devise a framework for the design of isolated RC buildings. First, this analytical study proposes to design RC building frames by securing an isolation period that is at least 2.5 times longer than the natural vibration period of a superstructure and configuring a target isolation period that is 3.0 s or longer. To verify the proposed plan, shaking table tests were conducted on a scaled-down model of 15-story RC building installed with laminated rubber bearings. The experimental results indicate that the tested isolated structure, which complied with the proposed conditions, exhibited an almost constant response distribution, verifying that the behavior of the structure improved in terms of usability. The RC building's response to inter-story drift (which causes structural damage) was reduced by about one-third that of a non-isolated structure, thereby confirming that the safety of such a superstructure can be achieved through the building's improved seismic performance.

A Study on the Acceleration Response Amplification Ratio of Buildings and Non-structural Components Considering Long-Period Ground Motions (장주기 지진동을 고려한 건축물 및 비구조요소의 가속도 응답 증폭비)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Structures of high-rise buildings are less prone to earthquake damage. This is because the response acceleration of high-rise buildings appears to be small by generally occurring short-period ground motions. However, due to the increased construction volume of high-rise buildings and concerns about large earthquakes, long-period ground motions have begun to be recognized as a risk factor for high-rise buildings. Ground motion observed on each floor of the building is affected by the eigenmode of the building because the ground motion input to the building is amplified in the frequency range corresponding to the building's natural frequency. In addition, long-period components of ground motion are more easily transmitted to the floor or attached components of the building than short-period components. As such, high-rise buildings and non-structural components pose concerns about long-period ground motion. However, the criteria (ASCE 7-22) underestimate the acceleration response of buildings and non-structural components caused by long-period ground motion. Therefore, the characteristics of buildings' acceleration response amplification ratio and non-structural components were reviewed in this study through shake table tests considering long-period ground motions.