• 제목/요약/키워드: natural modes of structures

검색결과 160건 처리시간 0.021초

Influence of higher order modes and mass configuration on the quality of damage detection via DWT

  • Vafaei, Mohammadreza;Alih, Sophia C
    • Earthquakes and Structures
    • /
    • 제9권6호
    • /
    • pp.1221-1232
    • /
    • 2015
  • In recent decades, wavelet transforms as a strong signal processing tool have attracted attention of researchers for damage identification. Apart from the wide application of wavelet transforms for damage identification, influence of higher order modes on the quality of damage detection has been a challenging matter for researchers. In this study, influence of higher order modes and different mass configurations on the quality of damage detection through Discrete Wavelet Transform (DWT) was studied. Nine different damage scenarios were imposed to four cantilever structures having different mass configurations. The first four mode shapes of the cantilever structures were measured experimentally and analyzed by DWT. A damage index was defined in order to study the influence of higher order modes. Results of this study showed that change in the mass configuration had a great impact on the quality of damage detection even when the changes altered natural frequencies slightly. It was observed that for successful damage detection all available mode shapes should be taken into account and measured mode shapes had no significant priority for damage detection over each other.

Extension of a semi-analytical approach to determine natural frequencies and mode shapes of a multi-span orthotropic bridge deck

  • Rezaiguia, A.;Fisli, Y.;Ellagoune, S.;Laefer, D.F.;Ouelaa, N.
    • Structural Engineering and Mechanics
    • /
    • 제43권1호
    • /
    • pp.71-87
    • /
    • 2012
  • This paper extends a single equation, semi-analytical approach for three-span bridges to multi-span ones for the rapid and precise determination of natural frequencies and natural mode shapes of an orthotropic, multi-span plate. This method can be used to study the dynamic interaction between bridges and vehicles. It is based on the modal superposition method taking into account intermodal coupling to determine natural frequencies and mode shapes of a bridge deck. In this paper, a four- and a five-span orthotropic roadway bridge deck are compared in the first 10 modes with a finite element method analysis using ANSYS software. This simplified implementation matches numerical modeling within 2% in all cases. This paper verifies that applicability of a single formula approach as a simpler alternative to finite element modeling.

건축구조물의 시스템 식별을 통한 무리보행의 해석 (Analysis of Group Walking Loads by System Identification of Building Structures)

  • 김태호;민경원;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.267-274
    • /
    • 2003
  • The objective of this study is to estimate the frequency characteristics of group walking loads based on the information of measured responses. At first, dynamic properties such as natural frequencies and modes are obtained from input/output relation for building structures by heel drop test. Second, a method to estimate group walking loads by the transfer functions from measured responses to group walking loads is proposed. The method turned out to estimate the group walking loads accurately. Higher modes could be important in estimating the amplitude of group walking loads with the information of single walking load.

  • PDF

Dynamic characteristics and wind-induced vibration coefficients of purlin-sheet roofs

  • Zhang, Yingying;Song, Xiaoguang;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1039-1054
    • /
    • 2016
  • This paper presents the dynamic characteristics analysis of the purlin-sheet roofs by the random vibration theories. Results show that the natural vibration frequency of the purlin-sheet roof is low, while the frequencies and mode distributions are very intensive. The random vibration theory should be used for the dynamic characteristics of the roof structures due to complex vibration response. Among the first 20th vibration modes, the first vibration mode is mainly the deformations of purlins, while the rest modes are the overall deformations of the roof. In the following 30th modes, it mainly performs unilateral local deformations of the roof. The frequency distribution of the first 20th modes varies significantly while those of the following 30th modes are relatively sensitive. For different parts, the contributions of vibration modes on the vibration response are different. For the part far from the roof ridge, only considering the first 5th modes can reflect the wind-induced vibration response. For the part near the ridge, at least the first 12 modes should be considered, due to complex vibration response. The wind vibration coefficients of the upwind side are slightly higher than that of the leeward side. Finally, the corresponding wind vibration coefficient for the purlin-sheet roof is proposed.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

다중 스마트 TMD를 이용한 대공간 아치구조물의 지진응답 제어 (Seismic Response Control of Spacial Arch Structures using Multiple Smart TMD)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제16권1호
    • /
    • pp.43-51
    • /
    • 2016
  • A novel vibration control method for vibration reduction of a spacial structure subjected to earthquake excitation was proposed in this study. Generally, spatial structures have various vibration modes involving high-order modes and their natural frequencies are closely spaced. Therefore, in order to control these modes, a spatially distributed MTMDs (Multiple TMDs) method is proposed previously. MR (Magnetorheological) damper were used to enhance the control performance of the MTMDs. Accordingly, MSTMDs (Multiple Smart TMDs) were proposed in this study. An arch structure was used as an example structure because it has primary characteristics of spatial structures and it is a comparatively simple structure. MSTMDs were applied to the example arch structure and the seismic control performance were evaluated based on the numerical simulation. Fuzzy logic control algorithm (FLC) was used to generate command voltages sent for MSTMSs and the FLC was optimized by genetic algorithm. Based on the analytical results, it has been shown that the MSTMDs effectively decreased the dynamic responses of the arch structure subjected to earthquake loads.

Analytical model for the prediction of the eigen modes of a beam with open cracks and external strengthening

  • Ovigne, P.A.;Massenzio, M.;Jacquelin, E.;Hamelin, P.
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.437-449
    • /
    • 2003
  • The aim of this study is to develop an analytical model of a beam with open cracks and external strengthening which is able to predict its modal scheme components (natural frequencies and mode shapes). The model is valid as far as the excitation level is low enough not to activate non linear effects. The application field of the model are either the prediction of the efficiency of the reinforcement or the non destructive assessment of the structural properties. The degrees of freedom associated to the fault lips must be taken into account in order to introduce the effect of the external strengthening. In a first step, an analytical formulation of a beam with thin notches is proposed according to the references. The model is then extended to incorporate the strengthening consisting in a longitudinal stiffness applied in the vicinity of the cracks. In a second step, the analytical results are compared with these obtained from a finite element simulation.

고유모드 계산을 위한 초기 반복벡터의 효율성 연구 (Investigation of Efficiency of Starting Iteration Vectors for Calculating Natural Modes)

  • 김병완;경조현;홍사영;조석규;이인원
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.112-117
    • /
    • 2005
  • Two modified versions of subspace iteration method using accelerated starting vectors are proposed to efficiently calculate free vibration modes of structures. Proposed methods employ accelerated Lanczos vectors as starting iteration vectors in order to accelerate the convergence of the subspace iteration method. Proposed methods are divided into two forms according to the number of starting vectors. The first method composes 2p starting vectors when the number of required modes is p and the second method uses 1.5p starting vectors. To investigate the efficiency of proposed methods, two numerical examples are presented.

비계 구조물의 구조해석 및 진동 특성 (Structural Analysis and Vibration Characteristics of Scaffolding Structures)

  • 류봉조;이창노;김후식
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.491-498
    • /
    • 2009
  • This paper deals with structural analysis and vibration characteristics of scaffolding structures with a hoist according to payloads. In order to analyze the vibrational and structural characteristics for 20-step scaffolding structure, structural and vibrational characteristics for 2-step scaffolding structure were compared with some experimental results. The numerical results for natural frequencies of scaffolding structures have a good agreement with experimental ones. Through the numerical analysis, firstly, it is shown that the maximum stress of scaffolding structures is lower than von-mises yield criteria when four persons with total weight of 280 kgf are working at the top of the scaffolding structures. Secondly, vibration characteristics including natural frequencies and modes for scaffolding structures are shown in case of various kinds of moving masses.

호이스트에 의한 비계 이송 시 적재하중에 의한 구조물 진동특성 연구 (A Study on Vibration Characteristics of Scaffolding Structures with a Hoist according to Payloads)

  • 류봉조;신광복;이재열;백수곤;김후식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.543-548
    • /
    • 2006
  • This paper presents the vibration characteristics of scaffolding structures with a hoist according to payloads. In order to analyze the vibrational and structural characteristics for 20-step scaffolding structure, structural and vibrational characteristics for 2-step scaffolding structure were compared with some experimental results. The numerical results for natural frequencies of scaffolding structures have a good agreement with experimental ones. Through the numerical analysis, firstly, it is shown that the maximum stress of scaffolding structures is lower than von-mises yield criteria when four persons with total weight of 280kgf are working at the top of the scaffolding structures. Secondly vibration characteristics including natural frequencies and modes for scaffolding structures are shown in case of various kinds of moving masses.

  • PDF