• Title/Summary/Keyword: natural juice

Search Result 182, Processing Time 0.016 seconds

Analytical Method for Determination of Laccaic Acids in Foods with HPLC-PDA and Monitoring (식품 중 락카인산 성분 분리정제를 통한 분석법 확립 및 실태조사)

  • Jae Wook Shin;Hyun Ju Lee;Eunjoo Lim;Jung Bok Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.390-401
    • /
    • 2023
  • Major components of lac coloring include laccaic acids A, B, C, and E. The Korean Food Additive Code regulates the use of lac coloring and prohibits its use in ten types of food products including natural food products. Since no commercial standards are available for laccaic acids A, B, C, and E, a standard for lac pigment itself was used to separate laccaic acids from the lac pigment molecule. A standard for each laccaic acid was then obtained by fractionation. To obtain pure lac pigment for use in food by High performance Liquid Chromatography Photo Diode Array (PDA), a C8 column yielded the best resolution among various tested columns and mobile phases. A qualitative analytical method using High Performance Liquid Chromatography (HPLC) Tandem Mass(LC-MS/MS) was developed. The conditions for fast and precise sample preparation begin with extraction using methanol and 0.3% ammonium phosphate, followed by concentration. The degree of precision observed for the analyses of ham, tomato juice and Red pepper paste was 0.3-13.1% (Relative Standard Deviation (RSD%)), degree of accuracy was 90.3-122.2% with r2=0.999 or above, and recovery rate was 91.6-114.9%. The limit of detection was 0.01-0.15 ㎍/mL, and the limits of quantitation ranged from 0.02 to 0.47 ㎍/mL. Lac pigment was not detected in 117 food products in the 10 food categories for which the use of lac pigment is banned. Multiple laccaic acids were detected in 105 food products in 6 food categories that are allowed to use lac color. Lac pigment concentrations range from 0.08 to 16.67 ㎍/mL.

Effect of Pumpkin, Corn Silk, Adzuki Bean, and Their Mixture on Weight Control and Antioxidant Activities in High Fat Diet-Induced Obesity Rats (호박즙, 옥수수수염차, 팥차 및 혼합물이 식이유도 비만동물모델에서 체중과 항산화 활성에 미치는 영향)

  • Park, Jae-Hee;Lee, Eunji;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.9
    • /
    • pp.1239-1248
    • /
    • 2016
  • Pumpkin juice (PJ), corn silk tea (CT), and adzuki bean tea (AT) have long been used for treatment of obesity in Korea. This study investigated the efficacy of PJ, CT, AT, and their mixture (PCA) on alteration of body weight and antioxidant metabolism in high-fat diet (HFD)-induced obese rats. After being fed HFD for 4 weeks, SD rats were divided into six groups fed a normal diet (ND), HFD, HFD+PJ [250 mg/kg body weight (BW)], HFD+CT (250 mg/kg BW), HFD+AT (250 mg/kg BW), and HFD+PCA (PJ : CT : AT=1:1:1, 250 mg/kg BW) for another 9 weeks. HFD consumption resulted in total lipid, triglyceride, and total cholesterol accumulation in adipose tissue, which was reduced by administration of PJ, CT, AT, or PCA. The plasma oxygen radical absorbance capacity value and hepatic glutathione peroxidase activity significantly increased compared to the HFD group. The liver thiobarbituric acid reactive substances was significantly lower in the PCA group than the HFD group. HFD-induced DNA damage in hepatocytes, as measured by comet assay, decreased in the PJ, AT, and PCA-supplemented groups. The PCA group exerted a superior antigenotoxic effect compared to other treatments. PCA recovered the concentration of plasma adiponectin, which was reduced by HFD. Adipocyte surface area (%) was significantly higher in the HFD group than the ND group, significantly lower in the PJ and PCA groups than the HFD group, and not significantly different compared with the ND group. Based on the results, supplementation of PJ, CT, AT, and PCA exhibited lipid-lowering effects in adipocytes of HFD-induced obese rats. Furthermore, the PCA group exhibited superior antioxidant activity in all treated groups. This study suggests that a mixed beverage consisting of PJ, CT, and AT may be a significant source of natural antioxidants, which might be helpful in preventing obesity and progress of various oxidative stresses induced by HFD.