• Title/Summary/Keyword: natural herbicides

Search Result 42, Processing Time 0.032 seconds

Brain Wave Response to Bottle Color of Herbicides and Non-selective Herbicides in Korea (제초제 포장지 색상이 소비자들의 뇌파에 미치는 영향)

  • Kim, Minju;Song, Jieun;Sowndhararajan, Kandhasamy;Kim, Songmun
    • Weed & Turfgrass Science
    • /
    • v.7 no.2
    • /
    • pp.130-139
    • /
    • 2018
  • The colors of packaging of herbicides and non-selective herbicides on the market in Korea are defined as brown and red, respectively, according to the notification of RDA. The present study aimed to understand consumer's electroencephalographic (EEG) response when looking at brown and red colors of herbicide and non-selective herbicide packaging papers. The EEG cap was placed on the scalp of each participant (men and women, 10 to 20 years old) and white (control) - brown - white - red colors were sequentially displayed for 5 seconds using the computer monitor. The EEG was measured and statistical analysis was performed using SPSS. For the brown color of the herbicide, men showed a decrease in concentration and a distracting response due to a decrease in the ratio of mid beta to theta (RMT) and the spectral edge of frequency (SEF90). In women, an increase in the ratio of SMR to theta (RSMT) and the spectral edge frequency 50% of the alpha (ASEF) was observed in different brain regions and these EEG changes may enhance the relaxation, stabilization and awakening states of the brain. For the red color of the non-selective herbicide, ASEF increased psychological stability in men. In women, a decrease in absolute high beta (AHB) may associate with a decrease in attention state of the brain. Overall data of the present study clearly revealed that the colors of two herbicides showed significantly different EEG response and gender difference.

Mixing Pyroligneous Acids with Herbicides to Control Barnyardgrass (Echinochloa crus-galli)

  • Acenas, Xernan Sebastian;Nunez, John Paolo Panisales;Seo, Pil Dae;Ultra, Venecio Uy Jr.;Lee, Sang Chul
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.164-169
    • /
    • 2013
  • Alternatives to commercial chemical herbicide are currently being searched and tested due to the numerous adverse effects of commercially available herbicides to the environment. Barnyardgrass (Echinochloa crusgalli) is an important weed species around the world, especially in paddy rice fields. This study focuses on the favorable effects of mixing pyroligneous acids with commercial liquid herbicides. Seedlings were transplanted and grown under greenhouse conditions. The effect of treatment time or leaf-stage on herbicide-pyroligneous acid efficacies was checked, coupled with isolation and quantification of biochemical compounds. Results revealed that herbicide treatment at early post emergence (2~3 leaf stage) of Echnochloa crus-galli leads to effective control. Both liquid herbicides affected fatty acid, protein, and amino acid syntheses as reflected on their contents. The influence of wood vinegar (WV) or rice vinegar (RV) on these compounds was not thoroughly verified due to lack of information on the pyroligneous products. We observed that mixing WV or RV with BCB (bentazone + cyhalof-butyl) gives more favorable results than BUC (butachlor + clomazone), mixed with WV or RV. The result would indicate the potential of mixing pyroligneous acid in reducing herbicide application rate.

Biological Activity of Extracts from Zea mays L. and Pinus densiflora L. (옥수수(Zea mays L.)와 소나무(Pinus densiflora L.) 추출물의 생물학적 활성)

  • ;Soul Chun;Nick E. Christians
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.4
    • /
    • pp.203-210
    • /
    • 1998
  • Environmental concerns arising from synthetic herbicides in plant management systems have led to an interest in plant-derived compounds as natural herbicides. Inhibitory effects of compounds extracted with 50% methanol from corn (Zea mays L.) and pine (Pinus densiflora L.) were evaluated on large crabgrass (Digitaria sanguinalis (L.) Scop.), annual bluegrass Poa annua L.), radish (Raphanus sativus L.), and perennial ryegrass (Lolium perenne L.) The aqueous extracts inhibited seed germination and had postemergence activity on the four species. The stability of biological activity of corn grain, stover, and root extracts was not affected by heating to $135^{\circ}C$ or freezing/thawing treatments when applied at levels above 0.25kg m(sup)-2 based on dry weights of powders before extraction. Heating reduced the activity of pine litter and bark extracts at all levels except the highest application level but had little effect on pine needle extracts.

  • PDF

Photodegradation of Butachlor and Pyrazosulfuron-ethyl in Rice Paddy Water under Natural Sunlight

  • Ok, Junghun;Watanabe, Hirozumi;Cho, Junglai;An, Nanhee;Lee, Byungmo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.134-137
    • /
    • 2014
  • BACKGROUND: Dissipation of herbicides in paddy water varies significantly, being dependent on environmental conditions such as sunlight. The photodegradation under natural sunlight may be one of natural degradation routes of herbicides dissipation. Therefore, the aim of this study was to monitor the degradation of butachlor and pyrazosulfuron-ethyl in paddy water under natural sunlight. METHODS AND RESULTS: The 12 water sample bottles of treatment were covered by quart glass plates, which allow about 90% of UV radiation (280-2000 nm) to pass through, to minimize the UV attenuation. The other 12 water sample bottles of the control were covered by glass lids and wrapped with aluminum foils to prevent the sunlight. The concentration of butachlor and pyrazosulfuron-ethyl in paddy water samples bottles was monitored under ambient conditions with and without natural sunlight. The concentration of butachlor and pyrazosulfuron-ethyl for treatment decreased from $355.3{\mu}g/L$ to $37.8{\mu}g/L$ and from $10.5{\mu}g/L$ to $3.9{\mu}g/L$, respectively, during consecutive 21 days after herbicide application under natural sunlight. CONCLUSION: The concentration of butachlor in paddy water decreased quickly under ambient conditions with natural sunlight. The degradation of butachlor in paddy water was enhanced by the natural sunlight. However, the degradation of pyrazosulfuron-ethyl was insignificant under natural sunlight.

Improved Soil Application Bioassay for Efficient Development of Natural Pre-emergence Herbicides (토양처리용 천연물제초제 개발을 위한 생물검정법 개선)

  • Kim, Jae-Deog;Hwang, Hyun-Jin;Seo, Bo-Ram;Choi, Jung-Sup;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.31 no.3
    • /
    • pp.229-239
    • /
    • 2011
  • This study was carried out to establish an improved bioassay system on the side of practicality, pre-emergence bioassay which is more effective in developing soil application natural herbicides. A miniaturized method which have a 50 cm2 of soil surface area and was efficient by 7 times compared to the existing soil application assay ($350cm^2$ of soil surface area) was established, in which four weed species (Echinochloa crus-galli, Digitaria sanguinalis, Aeschynomene indica, and Abutilon theophrasti) were planted and grown in greenhouse. This would be applicable when the amount of screening compound is much more than 50 mg. The initial application rate was desirable at $10,000{\mu}g\;mL^{-1}$. On the other hand, the 6 well plate assay which has 4 weed species in each well containing upland soil and could be conducted in growth chamber, was established. This assay was resulted in minimizing in level of 1/14 test volume and 1/14 amounts of test compound to the conventional method that has been used for screening of synthetic compounds in KRICT, and applicable for the small amount of test compound (less than 10 mg). Therefore, the improved bioassays established in this study would be helpful for a rapid and efficient development of soil application natural herbicides.

Occurrence characteristics and management plans of Lactuca scariola L., an ecosystem disturbance plant (생태계교란식물 가시상추의 발생특성과 관리방안)

  • In-Yong Lee;Seung-Hwan Kim;Yong-Ho Lee;Sun-Hee Hong
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.239-246
    • /
    • 2022
  • Lactuca scariola L. is one of ecosystem-disturbance plants that grow everywhere such as roadsides, grasslands, railroads, banks, and fields. L. scariola usually occurs in autumn. It overwinters in rosette form. It flowers and produces seeds in early summer of the next year. Seeds of L. scariola can germinate immediately without dormancy when the temperature is over 20℃. Due to endogenous bacteria in seeds of L. scariola, it has a strong drought tolerance. Thus, it can grow well on roadsides. L. scariola should be controlled as it can result in 60-80% of soybean yield loss at densities above 50 plants m-2. It is advisable to remove L. scariola as it competes with native plants by acting as a pioneer to other ecosystem-disturbance plants. Among various control methods, chemical control is the most effective method that is widely used. Soil treatment with herbicides such as oxyfluorfen EC and pendimethalin EC can inhibit the development of L. scariola. Foliar treatment herbicides glyphosate and glufosinateammonium are widely used. L. scariola is resistant to 2,4-D, dicamba, and MCPA among foliar treatment herbicides. Thus, it is recommended to apply herbicides with different modes of action.

Response of Phytotoxicity on Rice Varieties to HPPD-inhibiting Herbicides in Paddy Rice Fields (HPPD 저해 제초제에 대한 벼 품종별 약해 반응)

  • Kwon, Oh-Do;Shin, Seo-Ho;An, Kyu-Nam;Lee, Yeen;Min, Hyun-Kyeng;Park, Heung-Gyu;Shin, Hae-Ryoung;Jung, Ha-Il;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.32 no.3
    • /
    • pp.240-255
    • /
    • 2012
  • The objectives of this study were to investigate the levels of phytotoxicity of rice varieties to HPPD (4-hydroxy phenylpyruvate dioxygenase)-inhibiting herbicides known for their efficiency to control the sulfonylureas-resistant weed species:mestrione, benzobicyclone, and tefuryltrione. The twenty-six rice varieties (8-Japonica ${\times}$ Indica-type varieties and 18-Japonica-type varieties) were grown for 25 days on seedling trays and then transplanted to paddy rice fields followed by herbicide treatment i.e. standard and double doses of there respective herbicides at 5, 10, and 15 days after transplanting. Although mestrione, benzobicyclone and tefuryltrione are all HPPD-inhibiting herbicides, the phytotoxicity symptoms of the different rice varieties based on the timing of application and doses of the herbicides were significantly different. The Japonica ${\times}$ Indica-type varieties showed much more phytotoxicity symptoms than Japonica-type varieties in all applied herbicides. Increasing herbicidal doses of mesotrione, and an earlier application of and increasing herbicidal doses of benzobicyclon caused severe phytotoxicity symptoms. On the other hand, phytotoxicity due to tefuryltrione did not exhibit significant differences between rice varieties in either the timing of application or dose of the herbicide. Regardless of timing of application and dose of the herbicides, Hangangchalbyeo-1, Hyangmibyeo-1 and high-yield rice varieties such as Namcheonbyeo, Dasanbyeo, Areumbyeo, and Hanareumbyeo, which belong to the Japonica ${\times}$ Indica-type varieties, showed 5 to 8 levels of phytotoxicity symptoms including albinism, browning, detached leaf, and necrosis to mesotrione and benzobicyclon whereas only 1 to 3 levels of phytotoxicity symptoms (chlorosis, albinism, and browning) were seen with to tefuryltrione application. The Japonica-type varieties exhibited only slight phytotoxicity symptoms (1~2 levels) in conformity with the timing of application and doses of the herbicides. However, there were significant differences among the Japonica-type rice varieties, depending on the type of herbicide. Thirteen-Japonica type rice varieties were sensitive to benzobicyclone while 4-Japonica-type and 7-Japonica-type varieties showed phytotoxicity symptoms such as chlorosis and albinism with mestrione and tefuryltrione application, respectively. Therefore, we suggest that the combined-type herbicides including mestrione, benzobicyclone and tefuryltrione should be rejected in paddy fields where rice is grown for either human consumption (functional or processed rice) or livestock feed because of severe phytotoxicity symptoms on the various rice varieties seen regardless of the timing of application and doses of the herbicides.

Establishment of Foliar Application Assays for Developing Natural Herbicides (천연물 제초제 개발을 위한 전식물체 수준의 경엽처리 검정법 확립)

  • Kim, Jae-Deog;Jang, Hyun-Woo;Seo, Bo-Ram;Hwang, Hyun-Jin;Choi, Jung-Sup;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.30 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • This study was carried out to establish an improved bioassay system, whole-plant bioassay which is more effective in developing natural herbicides for foliar treatment such as herbicidal essential oils. Two bioassay systems using four weed species (Echinochloa crus-galli, Digitaria sanguinalis, Aeschynomene indica, and Abutilon theophrasti), spraying method and spotting method, were established. Spraying method is applicable if the amount of test compounds is enough, while spotting method is useful for the small amount of test compounds. The initial application rate was desirable at $2,500{\sim}5,000\;{\mu}g\;mL^{-1}$. Herbicidal activities were higher in the NOP treatment when compared to the Tween 20 treatment. To efficiently evaluate volatile compounds such as essential oils, if the compound-treated pots were incubated in dew chamber for about 10hrs, better results were obtained in the degree and stability of herbicidal responses. When the efficiency of bioassay systems established in this study was compared, the spraying method was minimized four times to the conventional method that has beed used for screening of synthetic compounds in KRICT. On the other hand, in the spotting method, screening for development of a natural herbicides was possible even in level of 1/100 test volume and 1/200 amounts of test compound compared to the spraying method.