• Title/Summary/Keyword: natural gas engine

Search Result 241, Processing Time 0.034 seconds

Effects of Exhaust Gas Recirculation on Power and Thermal Efficiency of Reactivity Controlled Compression Ignition in Different Load Conditions with a 6-L Engine (6 L급 압축착화 기관에서 천연가스-디젤 반응성 조정 연소 시 부하에 따른 배기 재순환율이 출력 및 열효율에 미치는 영향 분석)

  • Lee, Sunyoup;Lee, Seok-Hwan;Kim, Chang-Gi;Lee, Jeong-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2020
  • Reactivity controlled compression ignition (RCCI) combustion is one of dual-fuel combustion systems which can be constructed by early diesel injection during the compression stroke to improve premixing between diesel and air. As a result, RCCI combustion promises low nitrogen oxides (NOx) and smoke emissions comparing to those of general dual-fuel combustion. For this combustion system, to meet the intensified emission regulations without emission after-treatment systems, exhaust gas recirculation (EGR) is necessary to reduce combustion temperature with lean premixed mixture condition. However, since EGR is supplied from the front of turbocharger system, intake pressure and the amount of fresh air supplementation are decreased as increasing EGR rate. For this reason, the effect of various EGR rates on the brake power and thermal efficiency of natural gas/diesel RCCI combustion under two different operating conditions in a 6 L compression ignition engine. Varying EGR rate would influence on the combustion characteristic and boosting condition simultaneously. For the 1,200/29 kW and 1,800 rpm/(lower than) 90 kW conditions, NOx and smoke emissions were controlled lower than the emission regulation of 'Tier-4 final' and the maximum in-cylinder pressure was 160 bar for the indurance of engine system. The results showed that under 1,200 rpm/29 kW condition, there were no changes in brake power and thermal efficiency. On the other hand, under 1,800 rpm condition, brake power and thermal efficieny were decreased from 90 to 65 kW and from 37 to 33 % respectively, because of deceasing intake pressure (from 2.3 to 1.8 bar). Therefore, it is better to supply EGR from the rear of compressor, i.e. low pressure EGR (LP-EGR) system, comparing to high pressure EGR (HP-EGR) for the improvement of RCCI power and thermal efficiency.

Effect of CNG Heating Value Variations on Emissions Characteristics in a Diesel-CNG Dual-Fuel Engine (CNG 발열량 변화가 Diesel-천연가스 혼소엔진 배기 특성에 미치는 영향)

  • Jang, Hyongjun;Yoon, Junkyu;Lee, Sunyoup;Kim, Yongrae;Kim, Junghwan;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.43-49
    • /
    • 2016
  • In this paper, purpose of study is emissions characteristics according to effects of heating value variations of CNG fuel in a dual-fuel engine fueled by diesel and natural gas. For heating value variation of CNG fuel, nitrogen gas was mixed with pure CNG fuel. So the higher heating value was changed from $10,400kcal/Nm^3$ to $9,400kcal/Nm^3$. Under one condition of CNG substitution rate was fixed at 80%, diesel fuel was injected at a fixed injection timing of 16 CAD BTDC and fuel pressure was also fixed at 110 MPa. The condition of tested engine was 1800 rpm and 500Nm. Emissions were sampled in exhaust pipe was located at downstream turbocharger. As a result, emissions characteristics were checked in heating value variations of CNG fuel with mixed nitrogen gas THC, $CH_4$ and CO emissions decreased and NOx and $CO_2$ increased.

Experimental Study on Natural Gas Conversion Vehicle(2) - Evaluation of Injection System (천연가스 개조 승용차에 대한 실험적 연구(2) - 분사 시스템 평가)

  • Kim, Hyung-Gu;Kwon, Suntae;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.444-453
    • /
    • 2015
  • In the previous study, several problems were observed in a NG conversion vehicle, which were fail of air-fuel ratio closed loop control, aggravated fuel economy, increased harmful emission and declined roadability. It was provisionally supposed that the mismatch of injection system with the engine caused these performance deterioration. In this context, the characteristics of fuel injection system of commercial conversion kit for NG were investigated experimentally varying the engine speed, fuel rail pressure and volume. The results are as follows; The injection quantity decreases as the engine speed increases due to the extremely small rail volume of the presenting system and flow rate of No. 2 injector are always lower than that of the other ones regardless of the speed under the dynamic operation condition. Furthermore the existing system does not meet the required fuel quantity for the normal engine operation over 3000 RPM. On the other hands, the large rail volume systems ease and/or eliminate the difference of injection quantity between the injectors according to the speed variation, however, these systems decrease injection flow rate and still cannot supply sufficient fuel. Finally, suitable combination of the higher rail pressure and the larger rail volume might be a solution about these problems.

Performance Characteristics of CNG Vehicle at Various Compression Ratios (압축비 변경에 따른 CNG차량의 성능특성 연구)

  • 김봉석;이영재;고창조
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.42-49
    • /
    • 1996
  • Natural gas is one of the promising alternative fuels for automotive vehicles, because it has lower exhaust emissions and better fuel economy characteristics than those of gasoline, and can be used in conventional gasoline engines without major modifications. In the present study, a conventional gasoline engine was modified to a CNG engine, which can be operated with CNG only, and an engine bench test was performed to calibrate the operating parameters of the engine such as air fuel ratio, spark advance, etc. at various operating conditions. The modified CNG engine, then, was installed on a commercial gasoline vehicle and a vehicle driving test on chassis dynamometer was performed to examine the fuel economy and exhaust emission characteristics. As a result, the prototype CNG vehicle showed lower exhaust emissions and better fuel economy characteristics, but slightly reduced brake horse power, compared to the gasoline vehicle.

  • PDF

An Investigation on the Spray Characteristics of a Compressed Natural Gas Injector (고압 천연 가스 인젝터의 분무 특성에 관한 연구)

  • THONGCHAI, SAKDA;KANG, YUJIN;LIM, OCKTAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.2
    • /
    • pp.219-225
    • /
    • 2018
  • This study was carried out to investigate the injection characteristics of 800 kPa compressed natural gas compressed natural gas (CNG) injector developed in Korea. The CNG injector with multi-holes, employed in this experiment, was designed to inject CNG in the manifold at high pressure of 800 kPa. The spray macroscopic visualization test was carried out via Schlieren photography to study fuel-air mixing process. The fundamental spray characteristics, such as spray penetration, spray cone angle and spray velocity, were evaluated in the constant volume combustion chamber (CVCC) with varying the constant back pressure in CVCC from 0 to 1.8 bar. For the safety reason, nitrogen ($N_2$) and an acetone tracer were utilized as a surrogate gas fuel instead of CNG. The surrogate gas fuel pressures were controlled at 3, 5.5, and 8 bar, respectively. Injection durations were set at 5 ms throughout the experiment. The simulating events of the low engine speed were arranged at 1,000 rpm. The spray images were recorded by using a high-speed camera with a frame rate of 10,000 f/s at $512{\times}256pixels$. The spray characteristics were analyzed by using the image processing (Matlab). The results showed the significant difference that higher injection pressure had more effect on the spray shape than the lower injection pressure. When the injection pressure was increased, the longer spray penetration occurred. Moreover, the linear relation between speed and time are dependent on the injection pressure as well.

A Study on Durability Test of Check Valve for CNG Vehicles (천연가스 차량용 체크밸브의 내구성능에 관한 연구)

  • Kim, Chang-Gi;Lee, Sun-Youp;Cho, Gyu-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.15-20
    • /
    • 2009
  • The number of compressed natural gas (CNG) vehicles have increased gradually by virtue of korea government's urban air quality improvement policy since 1998. Although the use of CNG as transportation fuel gives environmental benefits, there is a possibility of huge accidents from unexpected fire. Therefore, needs for the guarantee of safety are indispensible for the reliable operation of CNG vehicles. A check valve is a safety device which prevents leakage of the pressurized fuel charged in a fuel tank. Durability of this component should be guaranteed in spite of repeated operation. This research has performed durability tests of a CNG check valve regarding the repeated usage, extreme chattering, and the effect of compressor oil.Although a check valve used for CNG vehicle satisfies validation requirements in the test results, it has been found that problem in the function of leakage prevention in a check valve could take place in the case of prolonged exposure to compressor oil.

  • PDF

Performance Test of 5MW Gas Turbine Engine Combustor (5MW 발전용 가스터빈 엔진 연소기 성능시험)

  • Park, Poo-Min;Kim, Hyung-Mo;Choi, Young-Ho;Yang, Soo-Seok;Chon, Mu-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.37-46
    • /
    • 2008
  • Performance test of 5MW class gasturbine combustor was carried out at combustor test facility of KARI(Korea Aerospace Research Institute). The combustor is dry low NOx type premixed combustor and fuel is natural gas. The characteristics of combustor were measured including emission, pressure pulsation and exit temperature distribution. Optimum operation point of combustor was found by changing parameters like fuel ratio between pilot and main burner. The test result showed that the combustor performance is sufficient to satisfy the gasturbine system requirement.

  • PDF

A Study on the Vacuum System for High Efficiency Marine Steam Turbine System (대형 터어빈계통의 고효율 배압시스템 개발에 관한 연구(I))

  • 김경근;윤석환;김용모;김종헌;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.13-24
    • /
    • 1994
  • The demand of clean energy, like liquefied gas(LNG), increase suddenly because it generates few polluting substances when burned and from the point of view with caloric value it generates ralatively less $CO_2$ gas than the other energy sources. LNG transpotion method of our country is marine transportion by ships because the LNG producing district is far away from Korea. Main engines for most LNG ships are steam turbines, and the efficiency of steam turbine is influenced by the degree of vacuum of main steam condenser. This paper introduce the design method of the vacuum system for high efficiency marine steam turbine. Especially, it is developed the CAD program for the large steam condenser and steam ejector. Also, it is designed the pilot plant including high pressure boiler for the performance test and maked a part of this plant.

  • PDF

Model analysis for production and utilization of hydrogen energy from wind power and solar cell (풍력-태양전지에 의한 수소에너지 생산과 이용 모델 분석)

  • Lee, Kee Mun;Park, Chang Kwon;Jeong, Kwi Seong;Oh, Byeong Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.4
    • /
    • pp.239-246
    • /
    • 2001
  • Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of thisg century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_{2}$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. The energy and cost analysis performed for hydrogen and electricity production from wind power and solar cell.

  • PDF

Analysis of the total system for production, transportation and utilization of hydrogen energy (수소 에너지 생산, 수송 및 이용에 대한 통합시스템 해석)

  • Oh, Byeong-Soo;Seo, Seog-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.1
    • /
    • pp.38-45
    • /
    • 1998
  • An energy crisis is expected in near future. Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of coming century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_2$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. A model of the total energy system for production, transportation and utilization of hydrogen is calculated.

  • PDF