• Title/Summary/Keyword: natural frequency sensitivity

Search Result 187, Processing Time 0.026 seconds

Damage Location Detection by Using Variation of Flexibility and its Sensitivity to Measurement Errors (유연도 변화를 이용한 연속교의 손상부위 추정 및 민감도 해석)

  • 최형진;백영인;이학은
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.138-146
    • /
    • 1996
  • The presence of a damage, such as a crack, in a structure increases the flexibility and damping in the structure. Most of methods to detect damage or damage location uses stiffness matrix of the structural system. The modification of stiffness matrix, however, has complicated procedures to identify structural. system in the basis of finite element model and has too many degree of freedom to calculate. Identification of changes of flexibility of structure can offer damage information immediately and simple procedure can employ real time continuous monitoring system. To identify changes of the flexibility, vibration mode shapes and natural frequencies are usually used. In this paper, a procedure for damage location in continuous girder bridges using vibration data is described. The effectiveness and sensitivity of the presented method to measurement errors in mode shapes and natural frequencies are investigated using analytical results from finite element models. It is shown that the errors in the first mode shape and first natural frequency demonstrate much larger influence than those in the higher mode shapes and modal frequencies.

  • PDF

Multidisciplinary Design Optimization for Acoustic Characteristics of a Speaker Diaphragm (스피커 진동판의 음향특성 다분야통합최적설계)

  • Kim, Sung-Kuk;Lee, Tae-Hee;Lee, Surk-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.763-766
    • /
    • 2004
  • Recently, various acoustic artifacts that contains speaker have been produced such as cellular phone. Speaker consists of diaphragm generating sound and coil vibrating diaphragm. Generally, good speaker means that it has a wide frequency range, high output power rate to input power and flat sound pressure level in specified frequency range. Acoustic characteristic was estimated through the experiment and computer simulation, or sound power was controlled with acoustic sensitivity in a natural frequency range fer last decade. However, the flatness of sound pressure level has not been considered to enhance the sound quality of a speaker. Tn this study, a method for speaker design is proposed for a good acoustic characteristic, which is flatness of SPL(sound pressure level) and wideness between the first and second natural frequency. SYSNOISE is used fer acoustic analysis and ANSYS is used for harmonic response analysis and modal analysis. Optimization for acoustic characteristics of a speaker diaphragm is performed using ModelCenter. All analyses are done within a frequency domain. And we confirm that the experimental and computational simulations have similar trend.

  • PDF

Identification of damage using natural frequencies and system moments

  • Hassiotis, S.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.285-297
    • /
    • 1999
  • A method is presented to find the location and magnitude of damage in a structure using data from dynamic tests. The test data include a combination of natural frequency measurements, taken before and after the occurrence of damage, and response measurements taken after damage. An algorithm is developed to identify localized increases in the flexibility of the structural members. Increases in flexibility are attributed to damage. The algorithm uses the sensitivity of the flexibility matrix to changes in the natural frequencies of the structure to identify the damage. A set of under determined equations is solved using an objective function which is derived from measurements of the system moments. Damage ranging from 10 to 60% increase in the flexibility of a member was successfully identified in a 50 d.o.f. structure, using a small number of natural frequency and velocity measurements.

Modal Parameter Estimation of Membrane for Standard Microphone Sensitivity Calibration (표준 마이크로폰 감도 교정을 위한 진동막의 모달 파라미터 측정)

  • 권휴상;서상준;서재갑;박준홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.298-302
    • /
    • 2002
  • Equivalent volume estimation of the coupler and two coupled microphones has a key role in standard microphone pressure calibration. The equivalent volume of the microphone is determined by the dynamic characteristics of the diaphragm system and front cavity. Therefore the modal parameters of diaphragm system - natural frequency and damping fatter - should be measured explicitly for the estimation of the equivalent volume. The diaphragm system is composed of the vibrating diaphragm, back slit behind diaphragm, pressure equalization vent, and front cavity which are acoustically coupled. In the measurement, the electrostatic actuator was used to excite the system with the swept sine, and the frequency response was obtained. The close actuator in front of the diaphragm must influence the radiation impedance of the system, and then the modal parameters. From the measured frequency response, the natural frequency and the damping factor could be estimated with the Complex exponential method based on the Prony model and the zero crossing real and imaginary plot.

  • PDF

Vibration Analysis of Bus Structure using Sensitivity Analysis of Bus Component Structures (부분 구조물의 민감도 분석을 이용한 버스차체의 진동분석)

  • Lee, Sang-Beom
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.355-361
    • /
    • 2009
  • In this paper, an analysis technique is presented for performing the effective design of bus structure. Sensitivity analysis is carried out for the natural frequency of component structures consisting of bus B.I.W. Local vibration modes of substructure, which large affect on the global vibration mode of the bus B.I.W., are obtained through the sensitivity analysis technique using the mathematical chain rule. And also the design variables, which are determined from the sensitivity analysis, are redesigned through optimum design process. The proposed analysis technique shows that the bus structure can be effectively designed considering the vibration characteristics.

  • PDF

Analysis on Vibration Characteristics of Bus Body Structure using Sensitivity Analysis of Component Structures (부분구조의 민감도해석을 이용한 버스차체의 진동특성 분석)

  • Kim, Jin-Hui;Lee, Sang-Beom;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.354-357
    • /
    • 2004
  • In this paper, a sensitivity analysis technique is presented for performing effective structural optimization of bus system. Design sensitivities are analyzed on natural frequency of bus substructures using super-element. Vibration modes of substructure, which large affect on the global vibration mode of bus B.I.W., are found through the sensitivity analysis using the chain rule. And design variables, which are determined from the sensitivity analysis, are changed through optimum design.

  • PDF

Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant (원통형 수직 펌프의 공진회피를 위한 접수진동해석)

  • Lee, Jae-Hwan;Wang, Ji-Teng;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

The Sensitivity Analysis of Coupled Axial and Torsional Undamped Free Vibration of Ship Propulsion Shafting (선박 추진축계 종.비틂 연성 비감쇠 고유진동 감도해석)

  • Yeon-Ho Kim;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.48-55
    • /
    • 2001
  • In this paper, sensitivity analysis for the coupled axial and torsional undamped free vibration of ship propulsion shafting is proposed. The purpose of this study is to effectively and optimally design the resonance frequencies of propulsion shafting affecting barred speed range of main engine by modifying the diameters of intermediate and propeller shafts. The presented method is validated by the sensitivity analysis for the natural frequencies of propulsion shafting of two real large merchant ships. In addition, the changes of natural frequency and resonance main engine speed are discussed in case that the diameter is varied within the range regulated by the rule of shipping register.

  • PDF

A Study on the Vibration Analysis of a Power Transmission Converter by Substructure Synthesis Method (부분구조합성법에 의한 동력전달 변화기의 진동해석에 관한 연구)

  • 박석주;왕지석;박성현;오창근;박영철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.52-57
    • /
    • 2000
  • This study intends to reduce the weight of structure without changing the dynamic characteristics. At first, the Vibration analysis by the Substructure Synthesis Method and FFM using the ANSYS are performed for the engine speed converter to confirm the reliability of the analyzing tools. Weight minimization is performed by the Sensitivity Analysis and the Optimum Structural Modification. To decrease the converter weight ideally, the parts with low sensitivity are to be cut mainly, and the changing quantity of the natural frequency by the cut is to be recovered by the weight modification of the parts with high sensitivity. As the unique mathematical solution for the homogeneous problem(i.e. 0 object function problem) does not exist, the converter is redesigned with much thinner initial thickness. The goal of this study is to recover the dynamic characteristics of redesigned structure to those of the original one. To say in the other words, the modified structure has the same dynamic characteristics and the more lighter weight to compare with the original one.

  • PDF

Eigenvalue Design Sensitivity Analysis To Redesign Spacer Grid Location In Nuclear Fuel Assembly (핵연료집합체 지지격자 위치결정을 위한 고유치 민감도해석)

  • 박남규;이성기;김형구;최기성;이준노;김재원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-709
    • /
    • 2002
  • The spacer grids in nuclear fuel assembly locate and align the fuel rods with respect to each other. They provide axial and lateral restraint against an excessive rod motion mainly caused by coolant flow. It is understood that each rod Is supported by multiple spacer grid. In such a case, it is important to determine spacer grid span so as to avoid resonance between the natural frequency of the fuel rods and excitation frequency. Actually dynamic characteristics of the fuel rods can be improved by assigning adequate spacer grid locations. When a dynamic performance of the structure is to be improved, design sensitivity analysis plays an important role as like many structural redesign problems. In this work, a shape design concept, different from conventional design, was applied to the problem. According to the theory shape can be a design parameter and optimal shape design can be found. This study concentrates on eigenvalue design sensitivity of the fuel rod supported by multiple spacer grids to determine optimal spacer grids positions.

  • PDF