• Title/Summary/Keyword: natural frequency of lateral vibration

Search Result 64, Processing Time 0.041 seconds

Determination of Eigenvalues of Sinusoidally Tapered Members by Finite Element Method (유한요소법을 이용한 정현상으로 taper진 부재의 고유치 산정)

  • Lee, Soo-Gon;Kim, Soon-Chul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.87-95
    • /
    • 2000
  • The two eigenvalues (elastic critical load and natural frequency of lateral vibration) of sinusoidally tapered bats with simply supported ends were determined by the finite element method. For the convenience of structural engineers who are engaged in the structural design or vibration analysis of tapered beam-columns, eigenvalue coefficients were expressed by simple algebraic equations. The validity of each algebraic equation was confirmed by the value of unity for each correlation coefficient. The influence of axial thrust on the lateral vibration frequency was also investigated. For this purpose, the axial thrust was increased successively and the corresponding frequency was calculated. The approximate linear relationship between the axial thrust and the square of the frequency was confirmed lot each of the tapered members.

  • PDF

A Case Study on the Lateral Vibration of Shafting System in context of forward stern tube bearing for Medium Size Container Ship (중형 컨테이너 운반선 축계장치의 선미관 선수베어링 설치 유무에 따른 횡진동 사례 연구)

  • LEE, Jae-Ung
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.3
    • /
    • pp.645-652
    • /
    • 2016
  • At the initial stage of propulsion shaft design, in line with shaft alignment, an intensified consideration of lateral vibration is needed to verify its operational safety. Recently the alignment problem affecting the lateral vibration has been becoming issues. However, the theoretical method of forced lateral vibration analysis is not cleary established so far and it is about to simply limited among the classification societies and international standards to avoid the blade natural frequency resonance cpm outside of ${\pm}20%$ of engine rpm at MCR. On the other hand, longer center distance between each support bearing shows an affirmative result normally in shaft alignment analysis whereas the blade order resonance speed may cause lowering near the limitation in the aspect of lateral vibration. Therefore, it is required careful attention to engineers as described above. As a method to solve the problem, it is mainly considered that remove forward stern tube bearing. In this paper, based on a medium size container ship case, theoretical study was carried out in the context of the forward stern tube bearing. The various effects and functions of forward stern tube bearing are reviewed and evaluated. Then an guidance note to lead the conclusion is proposed.

A Study on Noise and Vibration Reduction of an NC Lathe Gear Box (NC 선반 기어박스의 소음.진동 저감에 관한 연구)

  • Choi, Young-Hyu;Park, Seon-Kyun;Bae, Byung-Tae;Jung, Taek-Soo;Kim, Chung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.94-99
    • /
    • 2000
  • When operating NC lathe, gear box which is equipped with gear train and spindle sometimes generates loud noise and excessive vibrations. In order to identify their causes, In this study, torsional and lateral vibration characteristics including critical speeds of the gear train-spindle system are first analyzed by using torsional and lateral vibration models of the gear train and shafts. Natural frequencies and modes of the gear box structure are also analyzed by impulse hammer test. Furthermore, measured vibration and noise signals are analyzed and compared with theoretical analysis results. At last it is concluded that the cause of the excessive mise and vibration is the resonance between gear meshing frequency including its side bands, shaft bending and torsional vibration frequencies, and the natural frequencies of th gear box structure. Consequently the noise and vibration levels are greatly reduced by avoiding resonance between them through the redesign of the gear module.

  • PDF

A Study on Vibration and Noise Reduction of a Lathe Gear Box (선반 기어박스의 진동.소음 분석과 저감에 관한 연구)

  • 박선균;최영휴;배병태;정택수;김청수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.552-558
    • /
    • 2001
  • When operating lathe gear box which is equipped with geared transmission, it sometimes generates loud noise and excessive vibrations. In order to identify their causes, in this study, torsional and lateral vibration characteristics including critical speeds of the gear transmission system are firstly analyzed using lumped parameter models. Natural frequencies and mode shapes of the gear box structure are also analyzed by using the modal test. Furthermore, measured vibration and noise signals during operations are analyzed and compared with theoretical analysis results. After all, it is concluded that the primary cause of the excessive noise and vibrations is the resonance between gear meshing frequency including its side bands, the frequencies of shaft bending and torsional vibrations, and the natural frequencies of the gear box structure. Consequently the noise and vibration levels are greatly reduced by avoiding resonance between the natural frequencies and gear meshing frequencies through the rearrangement of the gears on the transmission shaft without any gear ratio change.

  • PDF

A Study on the vibration characteristics of offshore wind turbine tower including seabed soil-structure interaction (해저지반-구조물 상호작용을 고려한 해상풍력발전타워의 진동특성)

  • Lee, Jung-Tak;Lee, Kang-Su;Son, Choong-Yul;Park, Jong-Vin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.416-422
    • /
    • 2009
  • Offshore wind turbine are subjected to more various loads than general land structures and the stability of structures is supported by the piles driven deeply in the subsoil. So it is more important for offshore structures to consider seabed soil-structure interaction than land structures. And the response of a fixed offshore structure supported by pile foundations is affected by resist dynamics lateral loading due to wave forces and ocean environmental loads. In this study, offshore wind tower response are calculated in the time domain using a finite element package(ANSYS 11.0). Several parameters affecting the vibration characteristics of the natural frequency and mode shape and the tower response have been investigated.

  • PDF

Free Vibration Analysis of a Stepped Cantilever Beam with a Mass and a Spring at the End (끝단에 스프링과 질량을 가진 단진보의 자유진동해석)

  • Yu, Chun-Seung;Hong, Dong-Pyo;Chung, Tae-Jin;Chung, Kil-To
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2812-2818
    • /
    • 1996
  • A cantilever beam with a mass and a spring at the end can be use to model a miniature flexible arm. It is necessary to know the natural frequencies and mode shapes to discuss its free vibration, especially when modal analysis is employed. A beam is clamped-free. In this paper we look at the lateral vibration of beams that have step changes in the properties of their cross sections. The frequency equation is derived by Bernoulli-Euler formulation and is sloved by the separation of variable. The parameters of the beam, 'mass and spring stiffness' are defined as nondimensionalized parameters for wide application of the results. According to the change of eigenvalues and mode shape are presented for this beam. The results presented are the eigenvalues and the natural frequencies for the first three modes of vibration. Results show that the parameters have a significant effect on the natural frequency.

Analysis on the dynamic characteristics of RAC frame structures

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • The dynamic tests of recycled aggregate concrete (RAC) are carried out, the rate-dependent mechanical models of RAC are proposed. The dynamic mechanical behaviors of RAC frame structure are investigated by adopting the numerical simulation method of the finite element. It is indicated that the lateral stiffness and the hysteresis loops of RAC frame structure obtained from the numerical simulation agree well with the test results, more so for the numerical simulation which is considered the strain rate effect than for the numerical simulation with strain rate excluded. The natural vibration frequency and the lateral stiffness increase with the increase of the strain rate. The dynamic model of the lateral stiffness is proposed, which is reasonably applied to describe the effect of the strain rate on the lateral stiffness of RAC frame structure. The effect of the strain rate on the structural deformation and capacity of RAC is analyzed. The analyses show that the inter-story drift decreases with the increase of the strain rate. However, with the increasing strain rate, the structural capacity increases. The dynamic models of the base shear coefficient and the overturning moment of RAC frame structure are developed. The dynamic models are important and can be used to evaluate the strength deterioration of RAC structure under dynamic loading.

Analysis of Dynamic Characteristics Change of Middle-Sized Bus by Attachment of Trim Components (트림 부품의 부착에 따른 중형 버스의 동특성 변화 분석)

  • 이상범;임홍재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.88-93
    • /
    • 2004
  • In general, a fundamental structural design consideration for an automobile is the overall dynamic behavior in bending and torsion. Dynamic behavior of the automobile are mainly influenced by the structural stiffness of B.I.W.(body-in-white) and the physical property of trim components. In this paper, the modeling techniques for various trim components of middle-sized bus are presented, and the dynamic effects of the trim components on the vibration characteristics of the bus are investigated. The $1^{st}$ torsional frequency is decreased by attaching windshield and backlite to the B.I.W., but the $1^{st}$ vertical bending frequency and the $1^{st}$ lateral bending frequency are increased. The natural frequencies of the bus are decreased by attaching doors and windows. And also, the natural frequencies of the bus are large decreased by attaching seats, instrument panel etc. The study shows that the dynamic characteristics of the bus can be effectively predicted in the initial design stage.

Natural Frequency of Rotating Cantilever Pipe Conveying Fluid with Tip Mass (끝단질량을 가진 유체유동 회전 외팔 파이프의 고유진동수 해석)

  • Yoon, Han-Ik;Son, In-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.150-157
    • /
    • 2005
  • The vibration system in this study is consisted of a rotating cantilever pipe conveying fluid and a tip mass. The equation of motion is derived by using the Lagrange's equation. The influences of the rotating angular velocity and the velocity of fluid flow on the natural frequencies of a cantilever pipe have been studied by the numerical method. The effects of a tip mass on the natural frequencies of a rotating cantilever pipe are also studied. The influences of a tip mass, the velocity of fluid, the angular velocity of a cantilever pipe and the coupling of these factors on the natural frequency of a cantilever pipe are analytically clarified. The natural frequencies of a cantilever pipe conveying fluid are proportional to the angular velocity of the pipe in both axial direction and lateral direction.

In-plane Vibration Analysis for an Axially Moving Membrane (축방향으로 움직이는 박막의 면내 진동해석)

  • 정진태;신창호;김원석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.221-227
    • /
    • 2002
  • The longitudinal and lateral in-plane vibrations of an axially moving membrane are investigated when the membrane has translating acceleration. By extended Hamilton's principle, the governing equations are derived. The equations of motion for the in-plane vibrations are linear and coupled. These equations are discretized by using the Galerkin approximation method after they are transformed into the variational equations, j.e., the weak forms so that the admissible functions can be used for the bases of the in-plane deflections. With the discretized equations for the in-plane vibrations, the natural frequencies and the time histories of the deflections are obtained.