• Title/Summary/Keyword: natural fiber composite

Search Result 231, Processing Time 0.024 seconds

Applicability Assessment of Epoxy Resin Reinforced Glass Fiber Composites Through Mechanical Properties in Cryogenic Environment for LNG CCS (에폭시 수지가 적용된 유리섬유 복합재료의 극저온 환경 기계적 특성 분석을 통한 LNG CCS 적용성 평가)

  • Yeom, Dong-Ju;Bang, Seoung-Gil;Jeong, Yeon-Jae;Kim, Hee-Tae;Park, Seong-Bo;Kim, Yong-Tai;Oh, Hoon-Gyu;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.4
    • /
    • pp.262-270
    • /
    • 2021
  • Consumption of Liquefied Natural Gas (LNG) has increased due to environmental pollution; therefore, the need for LNG carriers can efficiently transport large quantities of LNG, is increased. In various types of LNG Cargo Containment System (CCS), Membrane-type MARK-III composed of composite materials is generally employed in the construction of an LNG carrier. Among composite materials in a Mark-III system, glass-fiber composites act as a secondary barrier to prevent the inner hull structure from leakage of LNG when the primary barrier is damaged. Nevertheless, several cases of damage to the secondary barriers have been reported and if damage occurs, LNG can flow into the inner hull structure, causing a brittle fracture. To prevent those problems, this study conducted the applicability assessment of composite material manufactured by bonding glass-fiber and aluminum with epoxy resin and increasing layer from three-ply (triplex) to five-ply (pentaplex). Tensile tests were performed in five temperature points (25, -20, -70, -120, and -170℃) considering temperature gradient in CCS. Scanning Electron Microscopy (SEM) and Coefficient of Thermal Expansion (CTE) analyses were carried out to evaluate the microstructure and thermos-mechanical properties of the pentaplex. The results showed epoxy resin and increasing layer number contributed to improving the mechanical properties over the whole temperature range.

Flexural-torsional Vibration Analysis of Thin-walled C-Section Composite Beams (박벽 C형 복합재료 보의 휨-비틀림 진동 해석)

  • Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2002
  • Free vibration of a thin-walled laminated composite beam is studied. A general analytical model applicable to the dynamic behavior of a thin-walled channel section composite is developed. This model is based on the classical lamination theory, and accounts for the coupling of flexural and torsional modes for arbitrary laminate stacking sequence configuration. i.e. unsymmetric as well as symmetric, and various boundary conditions. A displacement-based one-dimensional finite element model is developed to predict natural frequencies and corresponding vibration modes for a thin-walled composite beam. Equations of motion are derived from the Hamilton's principle. Numerical results are obtained for thin-walled composite addressing the effects of fiber angle. modulus ratio. and boundary conditions on the vibration frequencies and mode shapes of the composites.

Determination of Degraded Fiber Properties of Laminated CFRP Flat Plates Using the Bivariate Gaussian Distribution Function (이변량 Gaussian 분포함수를 적용한 CFRP 적층 평판의 보강섬유 물성저하 규명)

  • Kim, Gyu-Dong;Lee, Sang-Youl
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.299-305
    • /
    • 2016
  • This paper presents a method to detect the fiber property variation of laminated CFRP plates using the bivariate Gaussian distribution function. Five unknown parameters are considered to determine the fiber damage distribution, which is a modified form of the bivariate Gaussian distribution function. To solve the inverse problem using the combined computational method, this study uses several natural frequencies and mode shapes in a structure as the measured data. The numerical examples show that the proposed technique is a feasible and practical method which can prove the location of a damaged region as well as inspect the distribution of deteriorated stiffness of CFRP plates for different fiber angles and layup sequences.

Development of the Energy Storing Foot (에너지 저장형 인공발의 개발)

  • Kim, G.S.;Ryu, J.C.;Kim, S.J.;Mun, M.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.253-256
    • /
    • 1997
  • KESF-1 foot conceptually provides storage of potential energy and is converted to kinetic energy throughout the weight - bearing phase of the gait cycle. This stored energy is progressively released as the foot continues through the toe-off phase to rebound and propel the body forward. A weight deflects the keel through a predetermined range, then the keel "springs back" as weight is removed. Foot designs criteria were selected to guide development beyond the proof-of concept composite material keels; 1) store and return energy (1-3/4 " metatarsal deflection at 435 pounds vertical load), 2) natural feel and stability; 3) useful life of 3-years: 4) lightweight; 5) reduced production costs. The purpose of this study is developed the comfortable stable foot that fitted with Korean lifestyle and road condition. The results produced the realistic cosmetic foot cover with polyurethane form and the keel composed with composite materials of both glass fiber and carbon fiber.

  • PDF

Energy Absorption Characteristics of Composite Laminated Structural Member According to the Interface Number (복합적층 구조부재의 계면수 변화에 따른 에너지흡수특성)

  • Hwang, Woo-Chae;Lee, Kil-Sung;Cha, Cheon-Seok;Jung, Jong-An;Han, Gil-Young;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Ultimate goals in vehicle design can be summarized as environment-friendliness and safety. Along with these requirements, the importance of natural environment conservation has been focused lately. Therefore, reduced emission from vehicle and improved efficiency has become the top priority projects throughout the world. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. This study is to investigate the energy absorption characteristics of CFRP hat-shaped section members under the axial impact collapse test. The CFRP hat-shaped section members which manufactured from unidirectional prepreg sheets were made of 8plies. The axial impact collapse tests were carried out for each section members. The collapse mode and energy absorption characteristics were analyzed for CFRP hat-shaped section member according to the interface numbers(2, 3, 4, 6 and 7).

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Vibration and Stability of Composite Thin-Walled Spinning Shaft (복합재료 회전축의 진동 특성 및 안정성 해석)

  • Yoon, Hyung-Won;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1083-1088
    • /
    • 2004
  • This paper deals with the vibration and stability of a circular cylindrical shaft, modeled as a tapered thin-walled composite beam and spinning with constant angular speed about its longitudinal axis, and subjected to an axial compressive force. Hamilton's principle and the assumed mode method are employed to derive the governing equations of motion. The resulting eigenvalue problem is analyzed, and the stability boundaries are presented for selected taper ratios and axial compressive force combinations. Taking into account the directionality property of fiber reinforced composite materials, it is shown that for a shaft featuring flapwise-chordwise-bending coupling, a dramatic enhancement of both the vibration and stability behavior can be reached. It is found that by the structural tailoring and tapering, bending natural frequencies, stiffness and stability region can be significantly increased over those of uniform shafts made of the same material. In addition, the particular case of a classical beam with internal damping effect is also included.

  • PDF

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete

  • Moon, Jiho;Youm, Kwang Soo;Lee, Jong-Sub;Yun, Tae Sup
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • This study investigated the flowability and mechanical properties of cost-effective steel fiber reinforced ultra-high performance concrete (UHPC) by using locally available materials for field-cast application. To examine the effect of mixture constituents, five mixtures with different fractions of silica fume, silica powder, ground granulated blast furnace slag (GGBS), silica sand, and crushed natural sand were proportionally prepared. Comprehensive experiments for different mixture designs were conducted to evaluate the fresh- and hardened-state properties of self-consolidating UHPC. The results showed that the proposed UHPC had similar mechanical properties compared with conventional UHPC while the flow retention over time was enhanced so that the field-cast application seemed appropriately cost-effective. The self-consolidating UHPC with high flowability and low viscosity takes less total mixing time than conventional UHPC up to 6.7 times. The X-ray computed tomographic imaging was performed to investigate the steel fiber distribution inside the UHPC by visualizing the spatial distribution of steel fibers well. Finally, the tensile stress-strain curve for the proposed UHPC was proposed for the implementation to the structural analysis and design.

Estimation of Dynamic Response of Advanced Composite Material Decks for Bridges Application under Various Vehicle Driving Velocities (복합재료 교량 바닥판의 주행속도에 따른 동적응답 평가)

  • 천경식;장석윤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.23-32
    • /
    • 2003
  • Applications of advanced composite material in construction field are tending upwards and development of all composite material bridges is making progress rapidly in home and abroad due to their high strength to weight ratio. This paper formulated the dynamic responses of the laminated composite structures subjected to moving load and analyzed the various dynamic behaviors using the finite element method. The nondimensionalized natural frequencies of a simply supported square-laminated composite plate are considered for verifications. Mode superposition and Newmark direct integration method are applied for moving load analysis. For structural models, dynamic magnification factor calculated for various velocities of the moving load and displacements characteristics of laminated composite structures due to the moving load are investigated theoretically Numerical results are presented to study the effects of lamination scheme, stacking sequence, and fiber angle for laminated composite structures during moving load. The various results on moving load and lamination through numerical analysis will present an important basic data for development and grasp the behavior of all composite material bridges.