• Title/Summary/Keyword: natural composites

Search Result 433, Processing Time 0.02 seconds

Natural Frequency Characteristics of GFRP Pole Structures for Civil Structures with Different Fiber-Volume Fraction (모재-섬유 함침 비율에 따른 건설용 GFRP 기둥구조의 고유진동 특성)

  • Lee, Sang-Youl
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.66-71
    • /
    • 2014
  • This study carried out finite element vibration analysis of pole structures made of GFRP, which is based on the micro-mechanical approach for different fiber-volume fractions. The finite element (FE) models for composite structures using multi-scale approaches described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the effect of the material combination. The FE model is used for studying free vibrations of laminated composite poles for various fiber-volume fractions. In particular, new results reported in this paper are focused on the significant effects of the fiber-volume fraction for various parameters, such as fiber angles, layup sequences, and length-thickness ratios. It may be concluded from this study that the combination effect of fiber and matrix, largely governing the dynamic characteristics of composite structures, should not be neglected and thus the optimal combination could be used to design such civil structures for better dynamic performance.

Structural Design and Installation of Tracking-type Floating PV Generation System (추적식 수상 태양광발전 시스템의 설계 및 시공)

  • Kim, Sun-Hee;Lee, Young-Guen;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.59-65
    • /
    • 2014
  • Most of energy are obtained from oil, coal, and natural gas, most likely, fossil fuel which is limited throughout the world. Recently, high crude oil price, climate change, oil depletion, etc. are main reason to get attention to non-fossil energy including renewable energy in the world. In this study, we studied analysis and design of structure system composed of pultruded fiber reinforced polymer composite (PFRP) which has many advantages such as high specific strength and stiffness, high corrosion resistance and chemical resistance. For the design and construction of floating-type structure, PFRP structural members may be the first choice. Design of tracking-type floating PV generation structure was performed by using the results of the finite element analysis. The structure is fabricated and installed on the water surface. Before the installation of the structure, safety related problems associated with installation and operation are investigated using the finite element simulation and it was found that the structure is safe enough to resist externally applied loads.

A Study on the Optimization of Ply Angles for Composite Tube using Design of Experiments (실험계획법을 이용한 복합재 경통 적층각의 최적 설계에 관한 연구)

  • Park, Byong-Ug;Seo, Yu-Deok;Kim, Hyun-Jung;Youn, Sung-Kie;Lee, Seung-Hoon;Lee, Deog-Gyu;Lee, Eung-Shik;Chang, Su-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.627-633
    • /
    • 2009
  • Composite has become one of the most frequently used material for a tube of satellite camera due to its attractive characteristics. However, laminated composites can be weakened by delamination which comes from interlaminar stress. Such failure mode cause structural instability of the camera as well as degradation of optical quality. Therefore composite tube should be robust in delamination. Also, composite tube should have high stiffness, sufficient high natural frequency and small coefficient of thermal expansion. The design procedures presented in this paper are based on design of experiments. The experiments for mechanical analysis are designed by the tables of orthogonal arrays. In order to manipulate the various mechanical properties systematically, multiple-attribute decision making(MADM) is employed. Through analysis of variance and F-test, the critical design variables which have dominant influences on mechanical performance are determined. Finally improved ply angles for composite tube are determined.

The Effect of the CFRP/GFRP Composite Thickness on AE Characteristics and Mixed Mode Crack Behavior (CFRP/GFRP 적층복합재의 두께가 혼합모드 균열거동과 AE에 미치는 영향)

  • Yun, Yu-Seong;Kim, Da-Jin-Sol;Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.9-14
    • /
    • 2014
  • Recently many efforts and researches have been done to cope with industrial facilities that require a low energy machines due to the gradual depletion of the natural resources. The fiber-reinforced composite materials in general have good properties and have the proper mechanical properties according to the change of the ply sequences and fiber distribution types. However, in the fiber-reinforced composite material, there are several problems, including fiber breaking, peeling, layer lamination, fiber cracking that can not be seen from the metallic material. Particularly, the fracture and delamination are likely to be affected by the thickness of the stacking laminates when the bi-material laminated structure is subjected to a load of the mixed mode. In this study, we investigated the effect of the thickness ratio of the difference in the CFRP/GFRP bi-material laminate composites by measuring the cracking behavior and the AE characteristics in a mixed mode loading, which may be generated in the actual structure. The results show that the thickness of the CFRP becomes more thick, the mode I energy release rate becomes a larger, and also the influence of mode I is greater than that of mode II. In addition, AE amplitude which shows the level of the damage in the structure was obtained the more damage in the CFRP with the thin thickness.

AFP mandrel development for composite aircraft fuselage skin

  • Kumar, Deepak;Ko, Myung-Gyun;Roy, Rene;Kweon, Jin-Hwe;Choi, Jin-Ho;Jeong, Soon-Kwan;Jeon, Jin-Woo;Han, Jun-Su
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.32-43
    • /
    • 2014
  • Automatic fiber placement (AFP) has become a popular processing technique for composites in the aerospace industry, due to its ability to place prepregs or tapes precisely in the exact position when complex parts are being manufactured. This paper presents the design, analysis, and manufacture of an AFP mandrel for composite aircraft fuselage skin fabrication. According to the design requirements, an AFP mandrel was developed and a numerical study was performed through the finite element method. Linear static load analyses were performed considering the mandrel structure self-weight and a 2940 N load from the AFP machine head. Modal analysis was also performed to determine the mandrel's natural frequencies. These analyses confirmed that the proposed mandrel meets the design requirements. A prototype mandrel was then manufactured and used to fabricate a composite fuselage skin. Material load tests were conducted on the AFP fuselage skin curved laminates, equivalent flat AFP, and hand layup laminates. The flat AFP and hand layup laminates showed almost identical strength results in tension and compression. Compared to hand layup, the flat AFP laminate modulus was 5.2% higher in tension and 12.6% lower in compression. The AFP curved laminates had an ultimate compressive strength of 1.6% to 8.7% higher than flat laminates. The FEM simulation predicted strengths were 4% higher in tension and 11% higher in compression than the flat laminate test results.

Nano-Micelle of Moringa Oleifera Seed Oil Triggers Mitochondrial Cancer Cell Apoptosis

  • Abd-Rabou, Ahmed A;Zoheir, Khairy M A;Kishta, Mohamed S;Shalby, Aziza B;Ezzo, Mohamed I
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4929-4934
    • /
    • 2016
  • Cancer, a worldwide epidemic disease with diverse origins, involves abnormal cell growth with the potential to invade other parts of the body. Globally, it is the main cause of mortality and morbidity. To overcome the drawbacks of the commercially available chemotherapies, natural products-loaded nano-composites are recommended to improve cancer targetability and decrease the harmful impact on normal cells. This study aimed at exploring the anti-cancer impacts of Moringa oleifera seed oil in its free- (MO) and nano-formulations (MOn) through studying whether it mechanistically promotes mitochondrial apoptosis-mediating cell death. Mitochondrial-based cytotoxicity and flow cytometric-based apoptosis analyses were performed on cancer HepG2, MCF7, HCT 116, and Caco-2 cell lines against normal kidney BHK-21 cell line. The present study resulted that MOn triggered colorectal cancer Caco-2 and HCT 116 cytotoxicity via mitochondrial dysfunction more powerful than its free counterpart (MO). On the other side, MOn and MO remarkably induces HCT 116 mitochondrial apoptosis, while sparing normal BHK-21 cells with minimal cytotoxic effect. The present results concluded that nano-micelle of Moringa oleifera seed oil (MOn) can provide a novel therapeutic approach for colorectal and breast cancers via mitochondrial-mediated apoptosis, while sparing normal and even liver cancer cells a bit healthy or with minimal harmful effect. Intriguingly, MOn induced breast cancer not hepatocellular carcinoma cell death.

The Effect of Orientation of Magneto-responsible Particles on the Transmissibility of Magneto-rheological Elastomer (자기장 응답 입자의 배향이 자기유변 탄성체의 전달성에 미치는 영향)

  • Lee, Joo-Hwan;Chung, Kyung-Ho;Yoon, Ji-Hyun;Oh, Jae-Eung;Kim, Min-Soo;Yang, Kyung-Mo;Lee, Seong-Hoon
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.311-317
    • /
    • 2011
  • The neodymium magnet inserted mold was proposed to orient magneto-responsible particles efficiently. The anisotropic magneto-rheological elastomer(MRE) was prepared using the new mold and the optimum amounts of the particles was 30 vol.%. As the orientation of particles was increased, the tensile strength of MRE was decreased, while the hardness of MRE was increased. It was found that the MRE containing 30 vol.% of magneto-responsible particles showed the maximum magneto-rheological effect. The ratio of shear modulus shift was 59% at the input current of 3 A. The transmissibility of MRE was decreased with increasing the input current and loading amounts of magneto-responsible particles. Therefore, the damping property of MRE could be improved by preparing the anisotropic MRE.

Effects of Thickness, Elastomer Types and Thinner Content on Actuation Performance of Electro Active Dielectric Elastomers (탄성체의 두께, 종류 및 희석제 함유량이 전기활성 유전탄성체의 구동 성능에 미치는 영향)

  • Li, Bin;Lin, Zheng-Jie;Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • The actuation performance of an EADE (Electro-active dielectric elastomer) is studied as functions of thinner content, thickness and types of the dielectric elastomer such as natural (NR), acrylonitrile-butadiene (NBR), and silicon (KE-12) rubbers. With a decrease in elastomer thickness ($1{\rightarrow}0.5{\rightarrow}0.25{\rightarrow}0.1{\rightarrow}0.05$ mm) and an increase in thinner content ($0{\rightarrow}30{\rightarrow}50$ phr), the actuating displacement of KE-12 elastomer is increased, however their breakdown occurs at low voltage. For the same thickness (1 mm), the displacement of KE-12 elastomer shows a higher value (2.24 mm) compared to that of NR or NBR at the same applied voltage of 25 kV. The KE-12 has the lowest elastic modulus and the NBR has the highest one among the tested elastomers. However, the displacement of NBR elastomer is higher compared to that of NR because of high dielectric constant. It is found that the important factors of EADE actuator are a thickness, modulus and dielectric constant of the elastomer.

DGEBA-MDA-SN-Hydroxyl Group System and Composites -Cure Kinetics and Mechanism in DGEBA/MDA/SN/HQ System- (DGEBA-MDA-SN-Hydroxyl계 복합재료의 제조 -DGEBA-MDA-SN-HQ계의 경화반응 속도론 및 메카니즘-)

  • Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.517-523
    • /
    • 1994
  • The effects of cure kinetics and mechanism of DGEBA(diglycidyl ether of bisphenol A)/MDA(4,4'-methylene dianiline) with SN(succinonitrile) and HQ(hydroquinone) as an additive and accelerator were investigated. Cure kinetics was evaluated by Kissinger equation and fractional-life method through DSC analysis. The activation energy has hydroxyl group as an accelerator, the activation energy and the starting cure-temperature were lower than those of DGEBA/MDA/SN system. Cure mechanism of those systems was investigated through FT-IR according to the various SN contents. The ratio was SN : HQ = 4 : 1. It has been known that the cure reactions of an epoxy-diamine system are composed of primary amine-epoxy reaction, secondary amino-epoxy reaction and epoxy-hydroxyl group reaction. But in DGEBA/MDA/SN system, primary amino-CN group reaction and CN group-hydroxyl group reaction were added to the above mentioned reactions. These reactions attributed to the long main chain and the low crossliking density. And in DGEBA/MDA/SN/HQ system, hydroxyl group of HQ formed a transition state with epoxide group and amime group and also opened the ring of the epoxide group rapidly, then amino-epoxy reaction took place easily.

  • PDF

Low-Velocity Impact Detection of Composite Plate Using Piezopolymer Sensor Signals without Charge Amplifier (전하증폭기를 사용하지 않은 고분자 압전센서 신호를 이용한 복합재 평판의 저속충격 탐지)

  • 김인걸;정석모
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.47-54
    • /
    • 2000
  • One promising method for impact detection of composite structures is based on the use of piezopolymer thin fim (PVDf) sensor. In this paper, the relationship between the contact force and the signals of the attached strain gage and PVDF sensor to the composite plate subjected to low-velocity impact were derived. The relation for the open circuit and short circuit voltage of PVDF sensor was derived based on the equivalent circuit model of the piezoelectric sensor. The work was then extended to include experimental investigation into the use of short circuit voltage of PVDF sensor without using charge amplifier to detect low-velocity impact. The natural frequencies and damping ratio of the composite plate obtained from the vibration test were used to modify the analytical model and therefore the differences between measured and simulated signal of the modified analytical model in both forward and backward problem were considerably reduced. The reconstructed contact force and simulated sensor signals agreed well with the measured contact force, strain gage signal, and PVDF sensor singanl.

  • PDF