• Title/Summary/Keyword: natural carotenoids

Search Result 65, Processing Time 0.024 seconds

Methodology of Carotenoids Chemistry (Carotenoids 화학의 연구방법)

  • 김재웅
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.4
    • /
    • pp.360-366
    • /
    • 2001
  • This brief review is organized to integrate methodology of carotenoids chemistry from the author's experimental conceps. The majors include classification of carotenoids. extraction·phase separation, purification. crystalyzation, identification, quantitation, spectroscopic properties, organic reactions, and analytical methods of carotenoproteins. The goal is not write a important conceps of carotenoid but to provide a technical methods that may be useful to researchers of natural products chemistry.

  • PDF

Biosynthetic Pathway of Carotenoids in Rhodotorula and Strategies for Enhanced Their Production

  • Tang, Wei;Wang, Yue;Zhang, Jun;Cai, Yali;He, Zengguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.507-517
    • /
    • 2019
  • Rhodotorula is a group of pigment-producing yeasts well known for its intracellular biosynthesis of carotenoids such as ${\beta}-carotene$, ${\gamma}-carotene$, torulene and torularhodin. The great potential of carotenoids in applications in food and feed as well as in health products and cosmetics has generated a market value expected to reach over $2.0 billion by 2022. Due to growing public concern over food safety, the demand for natural carotenoids is rising, and this trend significantly encourages the use of microbial fermentation for natural carotenoid production. This review covers the biological properties of carotenoids and the most recent findings on the carotenoid biosynthetic pathway, as well as strategies for the metabolic engineering methods for the enhancement of carotenoid production by Rhodotorula. The practical approaches to improving carotenoid yields, which have been facilitated by advancements in strain work as well as the optimization of media and fermentation conditions, were summarized respectively.

Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

  • Lee, Ingu;Lee, Sebok;Pang, Yoonsoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.851-857
    • /
    • 2014
  • Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-${\beta}$-caroten-8'-al and 7',7'-dicyano-7'-apo-${\beta}$-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-${\beta}$-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the $S_2$ and $S_1$ excited states.

Structure and Function of the Genes Involved in the Biosynthesis of Carotenoids in the Mucorales

  • Iturriaga, Enrique A.;Velayos, Antonio;Eslava, Arturo P.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.263-274
    • /
    • 2000
  • Carotenoids are widely distributed natural pigments which are in an increasing demand by the market, due to their applicatins in the human food, animal feed, cosmetics, and pharmaceutical industries. Although more than 600 carotenoids have been identified in nature, only a few are industrially important (${\beta}$-carotene, astaxanthin, lutein or lycopene). To date chemical processes manufacture most of the carotenoid production, but the interest for carotenoids of biological origin is growing since theire is an increased public concern over the safety of artificial food colorants. Although much interest and effort has been devoted to the use of biological sources for industrially important carotenoids, only the production of biological ${\beta}$-carotene and astaxanthin has been reported. Among fungi, several Mucorales strains, particularly Blakeslea trispora, have been used to develop fermentation processes for the production of ${\beta}$-carotene on almost competitive cost-price levels. Similarly, the basidiomycetous yeast Xanthophyllomyces dendrorhous (the perfect state of Phaffia rhodozyma), has been proposed as a promising source of astaxanthin. This paper focuses on recent findings on the fungal pathways for carotenoid production, especially the structure and function of the genes involved in the biosynthesis of carotenoids in the Mucorales. An outlook of the possibilities of an increased industrial production of carotenoids, based on metabolic engineering of fungi for carotenoid content and composition, is also discussed.

  • PDF

Microbial Production of Carotenoids: Biological Functions and Commercial Applications (미생물에 의한 카로티노이드 생산; 생물학적 기능성 및 상업적 적용)

  • Seo, Yong Bae;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.726-737
    • /
    • 2017
  • Carotenoids are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. They typically consist of a $C_{40}$ hydrocarbon backbone often modified by different oxygen-containing functional groups, to yield cyclic or acyclic xanthophylls. Much work has also been focused on the identification, production, and utilization of natural sources of carotenoid (plants, microorganisms and crustacean by-products) as an alternative to the synthetic pigment which currently covers most of the world markets. Nevertheless, only a few carotenoids (${\beta}-carotene$, lycopene, astaxanthin, canthaxanthin, and lutein) can be produced commercially by fermentation or isolation from the small number of abundant natural sources. The market and demand for carotenoids is anticipated to increase dramatically with the discovery that carotenoids exhibit significant anti-carcinogenic activities and play an important role in the prevention of chronic diseases. The increasing importance of carotenoids in the feed, nutraceutical food and pharmaceutical markets has renewed by efforts to find ways of producing additional carotenoid structures in useful quantities. Because microorganisms and plants synthesize hundreds of different complex chemical carotenoid structures and a number of carotenoid biosynthetic pathways have been elucidated on a molecular level, metabolic and genetic engineering of microorganisms can provide a means towards economic production of carotenoid structures that are otherwise inaccessible. The aim of this article is to review our current understanding of carotenoid formation, to explain the perceived benefits of carotenoid in the diet and review the efforts that have been made to increase carotenoid in certain microorganisms.

Carotenoids Biosynthesis and Their Metabolic Engineering in Plants (식물에서 Carotenoid 생합성 경로와 대사공학적 응용)

  • Ha, Sun-Hwa;Kim, Jung-Bong;Park, Jong-Sug;Ryu, Tae-Hun;Kim, Kyung-Hwan;Hahn, Bum-Soo;Kim, Jong-Bum;Kim, Youg-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.81-95
    • /
    • 2003
  • Carotenoids are synthesized from the plastidic glyceraldehyde-3-phosphate (GAP)/pyruvate pathway in isoprenoids biosynthetic system of plants. They play a crucial role in light harvesting, work as photoprotective agents in photosynthesis of nature, and are also responsible for the red, orange and yellow colors of fruits and flowers in plants. In addition to biological actions of carotenoids as antioxidants and natural pigments, they are essential components of human diet as a source of vitamin A. It has been also suggested that some kinds of carotenoids might provide protection against cancer and heart disease as human medicines. In this article, we review the commercial applications on the basis of biological functions of carotenoids, summarize the studies of genes involved in the carotenoid biosynthetic pathway, and introduce recent results achieved in metabolic engineering of carotenoids. This effort for understanding the carotenoids metabolism will make us to increase the total carotenoid contents of crop plants, direct the carotenoid biosynthetic machinery towards other useful carotenoids, and produce a new array of carotenoids by further metabolizing the new precursors that are created when one or two key enzymes in carotenoid biosynthetic pathway are exchanged through gene manipulation in the near future.

Carotenoids pigment extraction from a wasted persimmon peel (폐기 감 과피를 이용한 Carotenoids색소의 추출)

  • 오상룡;차원섭;박준희;조영제;홍주헌;이원영
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.456-461
    • /
    • 2001
  • To develop the use of natural pigment for food, carotenoids from wasted persimmon peel were extracted with seven organic solvents. Among the solvents, acetone was a high yielding solvent of carotenoids. Extraction trends depending on process variables(temperature, time, solvent ratio to persimmon peel) were explained through response surface which was made by central composite experimental design. Carotenoid contents were increased with the extraction time and solvent ratio but it decreaed in the higher experimental design. Carotenoid contents were increased with the extraction time and solvent ratio but it decreased in the higher extraction temperature. The optimum conditions of extraction process variables were predicted as 29$\^{C}$, 93min. at fixed solvent ratio(1:27).

  • PDF

Metabolism of Dietary Carotenoids and Effects to Improve the Body Color of Cultured Flounder and Red sea bream (양식 넙치, 참돔의 사료 Carotenoids 대사와 체색개선에 미치는 영향)

  • HA Bong-Seuk;KANG Dong-Soo;KIM Jong-Hyun;CHOI Ok-Soo;RYU Ho-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.91-101
    • /
    • 1993
  • To investigate the effects on pigmentation and carotenoid metabolism of red sea breams Pagrus major and flounders Paralichithys olivaceus by the supplemented carotenoids, fishes wire fed the diet each containing ${\beta}$-carotene, lutein ester, astaxanthin, astaxanthin monoester, astaxanthin diester and ${\beta}$-apo-8'-carotenal for 8 weeks. Carotenoids in the integuments were analyzed. In cultured red sea breams with supplemented carotenoids, carotenoid deposition and pigmentation were higher in order of astaxanthin diester group, ${\beta}$-apo-8'-carotenal group and astaxanthin monoester group. The main carotenoids of red sea breams were astaxanthin diester, tunaxanthin and ${\beta}$-carotene. Difference in the content of astaxanthin diester and ${\beta}$-carotene was observed from natural and cultured red sea breams. In cultured flounders with supplemented carotenoids, carotenoid deposition and pigmentation were higher in order of ${\beta}$-carotene group and lutein ester group. The main carotenoids of flounders were zeaxanthin and lutein. Difference in lutein and ${\beta}$-carotene contents was observed from the natural and cultured flounders. Based on the contents and composition of carotenoids in each group after feeding experimental diet, carotenoid metabolism in red sea breams were presumed the reductive metabolic pathway, astaxanthin to tunaxanthin, and likewise, in flounders, lutein to tunaxanthin.

  • PDF

Metabolism of Dietary Carotenoids and Effects to Intensify the Body Color of Cultured Sea bass (양식 농어의 Carotenoids 대사와 체색선명화에 미치는 영향)

  • KANG Dong-Soo;HA Bong-Seuk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.3
    • /
    • pp.272-281
    • /
    • 1994
  • To investigate the effects on pigmentation and carotenoids metabolism of sea bass, Lateolablax japonicus, by supplemented carotenoids, fish were fed the diets each containing ${\beta}$-carotene, lutein ester, astaxanthin, astaxanthin monoester and astaxanthin diester for 8 weeks. Carotenoids in the integuments were analyzed. The important carotenoids in the integuments of sea bass were tunaxanthin and lutein. ${\beta}$-carotene, ${\beta}$-cryptoxanthin, zeaxanthin and ${\beta}$-carotene triol were minor contributors. Differences in the content of ${\beta}$-carotene, tunaxanthin fraction and lutein were observed between the natural and cultured sea bass. The wild sea bass contained higher amounts of tunaxanthin fraction and lutein, but contained lower amounts of ${\beta}$-carotene than cultured sea bass. In cultured sea bass with supplemented carotenoids, carotenoid deposition was higher in order of astaxanthin monoester group, astaxanthin group and astaxanthin diester group. Based on the contents and composition of carotenoids in each group after the feeding the experimental diet, The metabolism of carotenoid in sea bass was presumed to be the reductive metabolic pathways: astaxanthin to tunaxanthin via ${\beta}$-carotene triol, zeaxanthin and lutein.

  • PDF

Production of Carotenoids by Bacteria; Carotenoid Productivity and Availability (박테리아에 의한 카로티노이드 생산; 카로티노이드 생산성 및 활용 가능성)

  • Choi, Seong Seok;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.411-419
    • /
    • 2022
  • Carotenoids are red, orange, and yellow fat-soluble pigments that exist in nature, and are known as physiologically active substances with various functions, such as provitamin A, antioxidant, anti-inflammatory, and anticancer. Because of their physiological activity and color availability, carotenoids are widely used in the food, cosmetics, and aquaculture industries. Currently, most carotenoids used industrially use chemical synthesis because of their low production cost, but natural carotenoids are in the spotlight because of their safety and physiologically active effects. However, the production of carotenoids in plants and animals is limited for economic reasons. Carotenoids produced by bacteria have a good advantage in replacing carotenoids produced by chemical synthesis. Since carotenoids produced from bacteria have limited industrial applications due to low productivity, studies are continuously being conducted to increase the production of carotenoids by bacteria. Studies conducted to increase carotenoid production from bacteria include the activity of enzymes in the bacterial carotenoid biosynthesis pathway, the development of mutant strains using physical and chemical mutagens, increasing carotenoid productivity in strain construction through genetic engineering, carotenoid accumulation through stress induction, fermentation medium composition, culture conditions, co-culture with other strains, etc. The aim of this article was to review studies conducted to increase the productivity of carotenoids from bacteria.