• Title/Summary/Keyword: national protocols

검색결과 820건 처리시간 0.029초

Regional Differences in Access to Clinical Trials for Cancer in Korea

  • Kim, Woorim;Jang, Seongkyeong;Chang, Yoon Jung
    • 한국의료질향상학회지
    • /
    • 제27권1호
    • /
    • pp.20-25
    • /
    • 2021
  • Purpose: The ability to access clinical trials for cancer treatment is important. This study investigated whether regional differences exist in oncologic clinical trial protocols conducted in South Korea. Methods: Records of all approved oncologic clinical trials conducted in 2019 were downloaded from the Republic of Korea Ministry of Food and Drug Safety. The study covered Seoul, the capital area, other metropolitan cities, and provincial areas. Descriptive statistics summarized the distribution patterns of clinical trials by region. Results: A total of 202 oncologic clinical trials were conducted in 63 institutions in 2019. Of these protocols, 186 (92%) were available in Seoul, 120 (59%) in the capital area, 64 (32%) in metropolitan cities, and 66 (33%) in provincial areas. More regional differences in protocol availability were observed in domestic trials, investigator-initiated trials, phase 1 and 2 trials, and smaller-scale trials. Conclusion: Most oncologic clinical trials were conducted in medical institutions located in Seoul, with the rest conducted in the capital area, metropolitan cities, and provincial areas. The findings reveal clear differences in protocol availability between Seoul and the other regions. Measures designed to improve geographical access to oncologic clinical trials may be needed given their growing importance in cancer treatment.

An Intelligent MAC Protocol Selection Method based on Machine Learning in Wireless Sensor Networks

  • Qiao, Mu;Zhao, Haitao;Huang, Shengchun;Zhou, Li;Wang, Shan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5425-5448
    • /
    • 2018
  • Wireless sensor network has been widely used in Internet of Things (IoT) applications to support large and dense networks. As sensor nodes are usually tiny and provided with limited hardware resources, the existing multiple access methods, which involve high computational complexity to preserve the protocol performance, is not available under such a scenario. In this paper, we propose an intelligent Medium Access Control (MAC) protocol selection scheme based on machine learning in wireless sensor networks. We jointly consider the impact of inherent behavior and external environments to deal with the application limitation problem of the single type MAC protocol. This scheme can benefit from the combination of the competitive protocols and non-competitive protocols, and help the network nodes to select the MAC protocol that best suits the current network condition. Extensive simulation results validate our work, and it also proven that the accuracy of the proposed MAC protocol selection strategy is higher than the existing work.

실감미디어 전송을 위한 차세대 HTTP 기반 적응적 스트리밍 전송 프로토콜 연구 (A Study on Next Generation HTTP-based Adaptive Streaming Transmission Protocol for Realistic Media)

  • 송민정;유성근;박상일
    • 방송공학회논문지
    • /
    • 제24권4호
    • /
    • pp.602-612
    • /
    • 2019
  • 실감 미디어의 발전에 의해 시청자의 QoE를 보장하기 위해 다양한 스트리밍 기술에 대한 연구가 진행되고 있다. HTTP 적응적 스트리밍은 그 대표적인 예이며 HTTP/1.1과 TCP 기반으로 이루어져 있다. 해당 프로토콜들은 웹 페이지 대기 시간을 증가시키고 영상의 지연을 불어일으키는 원인의 하나로 대두되고 있다. 따라서 본 논문에서는 다양한 전송 프로토콜과 HTTP의 발전과정에 대해 분석한 후 UDP 기반의 전송프로토콜인 QUIC과 HTTP/2를 MPEG-DASH 시스템에 적용한 QUIC-DASH 시스템을 제안한다. 실험을 통해 해당 QUIC-DASH 시스템은 LTE 환경의 전송 속도 측면에서 기존의 시스템보다 최적의 성능 제공 가능성을 확인하였다. 또한, 더 나은 성능을 위해 다양한 차후 연구에 대해 제안한다.

임상시험에서 인공지능의 활용에 대한 분석 및 고찰: ClinicalTrials.gov 분석 (Trends in Artificial Intelligence Applications in Clinical Trials: An analysis of ClinicalTrials.gov)

  • 고정민;이지연;송윤경;김재현
    • 한국임상약학회지
    • /
    • 제34권2호
    • /
    • pp.134-139
    • /
    • 2024
  • Background: Increasing numbers of studies and research about artificial intelligence (AI) and machine learning (ML) have led to their application in clinical trials. The purpose of this study is to analyze computer-based new technologies (AI/ML) applied on clinical trials registered on ClinicalTrials.gov to elucidate current usage of these technologies. Methods: As of March 1st, 2023, protocols listed on ClinicalTrials.gov that claimed to use AI/ML and included at least one of the following interventions-Drug, Biological, Dietary Supplement, or Combination Product-were selected. The selected protocols were classified according to their context of use: 1) drug discovery; 2) toxicity prediction; 3) enrichment; 4) risk stratification/management; 5) dose selection/optimization; 6) adherence; 7) synthetic control; 8) endpoint assessment; 9) postmarketing surveillance; and 10) drug selection. Results: The applications of AI/ML were explored in 131 clinical trial protocols. The areas where AI/ML was most frequently utilized in clinical trials included endpoint assessment (n=80), followed by dose selection/optimization (n=15), risk stratification/management (n=13), drug discovery (n=4), adherence (n=4), drug selection (n=1) and enrichment (n=1). Conclusion: The most frequent application of AI/ML in clinical trials is in the fields of endpoint assessment, where the utilization is primarily focuses on the diagnosis of disease by imaging or video analyses. The number of clinical trials using artificial intelligence will increase as the technology continues to develop rapidly, making it necessary for regulatory associates to establish proper regulations for these clinical trials.

qPALS: Quality-Aware Synchrony Protocol for Distributed Real-Time Systems

  • Kang, Woochul;Sha, Lui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3361-3377
    • /
    • 2014
  • Synchronous computing models provided by real-time synchrony protocols, such as TTA [1] and PALS [2], greatly simplify the design, implementation, and verification of real-time distributed systems. However, their application to real systems has been limited since their assumptions on underlying systems are hard to satisfy. In particular, most previous real-time synchrony protocols hypothesize the existence of underlying fault tolerant real-time networks. This, however, might not be true in most soft real-time applications. In this paper, we propose a practical approach to a synchrony protocol, called Quality-Aware PALS (qPALS), which provides the benefits of a synchronous computing model in environments where no fault-tolerant real-time network is available. qPALS supports two flexible global synchronization protocols: one tailored for the performance and the other for the correctness of synchronization. Hence, applications can make a negotiation flexibly between performance and correctness. In qPALS, the Quality-of-Service (QoS) on synchronization and consistency is specified in a probabilistic manner, and the specified QoS is supported under dynamic and unpredictable network environments via a control-theoretic approach. Our simulation results show that qPALS supports highly reliable synchronization for critical events while still supporting the efficiency and performance even when the underlying network is not stable.

전국 의료기관의 냉 요법 실무지침 및 임상간호사의 냉 요법 실무 현황 (Nursing Protocols of Cold Application in Different Medical Institutions in Korea)

  • 신용순
    • 임상간호연구
    • /
    • 제21권3호
    • /
    • pp.355-365
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate nursing protocols for superficial cryotherapy in different medical institutions. Methods: The study was conducted with a cross-sectional descriptive design. The medical institutions including general hospitals, hospitals, and geriatric hospitals were randomly selected. A total of 435 nurses from 126 institutions completed a questionnaire. Data were collected from December 2014 to June 2015. Results: Forty-two institutions (39.5%) had nursing protocol for cryotherapy. The nurses reported that durations of cold application were 2 minutes to 5 hours. Frequently used cold therapy devices in order of frequency were frozen gel packs, ice packs, and frozen IV fluid bags. There were variances in the duration of cold application according to the types of institution ($x^2=7.78$, p=.020) and nursing units ($x^2=26.42$, p<.001). In addition, intervals of cold application were different according to the nursing units (x=12.23, p=.032). There were differences in cold application instruments by regional groups (x=70.38, p<.001). Most of the nurses (95.6%) responded that national nursing protocol for superficial cryotherapy were needed. Conclusion: There were difficulties in providing consistent nursing interventions because of the practical differences and absence of evidence-based guidelines for cryotherapy. The researchers recommend that basic studies with various instruments be conducted and proper nursing protocols be developed for cryotherapy.

One-round Secure Key Exchange Protocol With Strong Forward Secrecy

  • Li, Xiaowei;Yang, Dengqi;Chen, Benhui;Zhang, Yuqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5639-5653
    • /
    • 2016
  • Security models for key exchange protocols have been researched for years, however, lots of them only focus on what secret can be compromised but they do not differentiate the timing of secrets compromise, such as the extended Canetti-Krawczyk (eCK) model. In this paper, we propose a new security model for key exchange protocols which can not only consider what keys can be compromised as well as when they are compromised. The proposed security model is important to the security proof of the key exchange protocols with forward secrecy (either weak forward secrecy (wFS) or strong forward secrecy (sFS)). In addition, a new kind of key compromise impersonation (KCI) attacks which is called strong key compromise impersonation (sKCI) attack is proposed. Finally, we provide a new one-round key exchange protocol called mOT+ based on mOT protocol. The security of the mOT+ is given in the new model. It can provide the properties of sKCI-resilience and sFS and it is secure even if the ephemeral key reveal query is considered.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권1호
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.

An Improved Lightweight Two-Factor Authentication and Key Agreement Protocol with Dynamic Identity Based on Elliptic Curve Cryptography

  • Qiu, Shuming;Xu, Guosheng;Ahmad, Haseeb;Xu, Guoai;Qiu, Xinping;Xu, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.978-1002
    • /
    • 2019
  • With the rapid development of the Internet of Things, the problem of privacy protection has been paid great attention. Recently, Nikooghadam et al. pointed out that Kumari et al.'s protocol can neither resist off-line guessing attack nor preserve user anonymity. Moreover, the authors also proposed an authentication supportive session initial protocol, claiming to resist various vulnerability attacks. Unfortunately, this paper proves that the authentication protocols of Kumari et al. and Nikooghadam et al. have neither the ability to preserve perfect forward secrecy nor the ability to resist key-compromise impersonation attack. In order to remedy such flaws in their protocols, we design a lightweight authentication protocol using elliptic curve cryptography. By way of informal security analysis, it is shown that the proposed protocol can both resist a variety of attacks and provide more security. Afterward, it is also proved that the protocol is resistant against active and passive attacks under Dolev-Yao model by means of Burrows-Abadi-Needham logic (BAN-Logic), and fulfills mutual authentication using Automated Validation of Internet Security Protocols and Applications (AVISPA) software. Subsequently, we compare the protocol with the related scheme in terms of computational complexity and security. The comparative analytics witness that the proposed protocol is more suitable for practical application scenarios.