• Title/Summary/Keyword: national production

Search Result 20,413, Processing Time 0.044 seconds

Inhibitors of Nitric Oxide Production from Artemisia princeps

  • Li, Dayu;Han, Xiang Hua;Hong, Seong-Su;Lee, Chul;Lee, Moon-Soon;Lee, Dong-Ho;Lee, Mi-Kyeong;Hwang, Bang-Yeon
    • Natural Product Sciences
    • /
    • v.16 no.3
    • /
    • pp.143-147
    • /
    • 2010
  • The chromatographic separation of a methanol extract of Artemisia princes led to the isolation of two sesquiterpene lactones, artecanin (1) and canin (2), together with a flavonoid, eupatilin (3). Their structures were determined by 1D, 2D-NMR and MS data analysis. All of the isolates were evaluated for their potential to inhibit the LPS-induced production of nitric oxide in murine macrophage RAW 264.7 cells. Compounds 1 - 3 inhibited nitric oxide production with $IC_{50}$ values of 19.5, 20.4 and 25.1 ${\mu}M$, respectively.

Chemical Constituents from Buddleja officinalis and Their Inhibitory Effects on Nitric Oxide Production

  • Park, Tae Wook;Lee, Chul;Lee, Jin Woo;Jang, Hari;Jin, Qinghao;Lee, Mi Kyeong;Hwang, Bang Yeon
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.129-133
    • /
    • 2016
  • Bioactivity-guided fractionation of a methanolic extract of Buddleja officinalis led to the isolation of two monoterpenes, crocusatin M (1), crocusatin C (2), a flavonoid, acacetin (3), three lignans, lariciresinol (4), pinoresinol (5), and syringaresinol (6), and two triterpenoidal saponins, mimengoside B (7) and songarosaponin A (8). The structures of isolates were identified based on 1D-, 2D-NMR, and MS data analysis. All isolates were tested for their inhibition on LPS-induced NO production in RAW 264.7 cells. As a result, mimengoside B (7) and songarosaponin A (8) showed a mild inhibitory activity of NO production.

Optimal Culture Conditions for the Production of a Novel Extracellular Alkaline Lipase from Yarrowia lipolytica NRRL Y-2178

  • Lee, Geon-Ho;Bae, Jae-Han;Suh, Min-Jung;Kim, Hak-Ryul
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.46-51
    • /
    • 2007
  • Lipases are industrially useful versatile enzymes that catalyze numerous different reactions. Among lipases functioning under extreme conditions, alkaline lipase is useful in detergent industry. Lipase from yeast strain Yarrowia lipolytica NRRL Y-2178 was most active under alkaline condition, and initial medium pH for most lipase production was also alkaline [Lee et al., 2007, J Microbiol Biotechnol, 17(6)]. High lipase production was achieved using Y. lipolytica NRRL Y-2178. Optimal incubation time for lipase production at $25^{\circ}C$ was 72 h. Optimal temperature, when incubated for 72 h, was $27.5^{\circ}C$. Lipase production but not cell growth was very sensitive to concentrations of glucose and glycerol as efficient carbon sources, showing optimal concentrations of 1.0 and 1.5% (w/v), respectively. Lipase production was highly stimulated by $Ca^{2+},\;K^+,\;and\;Na^+$, but was inhibited by $Co^{2+},\;Cu^{2+},\;Mn^{2+},\;Na^+,\;and\;Fe^{2+}$. Maximum lipase production at 0.1 mM $Ca^{2+}$ for 72 h incubation at $27.5^{\circ}C$ was 649 units/mL.

Optimization of Major Culture Elements on Growth and Shikonin Production in the Lithospermum erythrorhizon Hairy Root Culture

  • Hwang, Ok-Jin;Kim, Yu-Jeong;Sung, Nak-Sul;Ahn, Jun-Cheul;Kim, Sik-Eung;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.4
    • /
    • pp.243-248
    • /
    • 2002
  • The effects of basal media, carbon, nitrogen, phosphate and some major macro elements on growth and shikonin production in Lithospermum erythrorhizon hairy root culture were studied. Among examined media, growth of hairy root cultured in B5 liquid medium was rapid, whereas shikonin production was high in MS liquid medium. Under B5 basal medium, sucrose concentration for optimal growth and shikonin production was 9% and 4% respectively. The growth and shikonin production on pH changes in B5 medium resulted little effect in pH 5.8 to pH 8.8 ranges, whereas growth was decreased dramatically in both above 8.8 and under 5.8. Nitrogen source and concentration effected on the growth and shikonin production. The highest growth rate was in B5 medium (50 mM $KNO_3$ and 1 mM $NaH_2PO_4)$, whereas the highest shikonin production was in the condition supplemented with 5 mM $KNO_3$ and 10 mM $NaH_2PO_4$.

Estimation of Genetic Associations between Production and Meat Quality Traits in Duroc Pigs

  • Cabling, M.M.;Kang, H.S.;Lopez, B.M.;Jang, M.;Kim, H.S.;Nam, K.C.;Choi, J.G.;Seo, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1061-1065
    • /
    • 2015
  • Data collected from 690 purebred Duroc pigs from 2009 to 2012 were used to estimate the heritability, and genetic and phenotypic correlations between production and meat quality traits. Variance components were obtained through the restricted maximum likelihood procedure using Wombat and SAS version 9.0. Animals were raised under the same management in five different breeding farms. The average daily gain, loin muscle area (LMA), backfat thickness (BF), and lean percent (LP) were measured as production traits. Meat quality traits included pH, cooking loss, lightness ($L^*$), redness ($a^*$), yellowness ($b^*$), marbling score (MS), moisture content (MC), water holding capacity (WHC), and shear force. The results showed that the heritability estimates for meat quality traits varied largely from 0.19 to 0.79. Production traits were moderate to highly heritable from 0.41 to 0.73. Genotypically, the BF was positively correlated (p<0.05) with MC (0.786), WHC (0.904), and pH (0.328) but negatively correlated with shear force (-0.533). The results of genetic correlations indicated that selection for less BF could decrease pH, moisture content, and WHC and increase the shear force of meat. Additionally, a significant positive correlation was recorded between average daily gain and WHC, which indicates pork from faster-growing animals has higher WHC. Furthermore, selection for larger LMA and LP could increase MS and lightness color of meat. The meat quality and production traits could be improved simultaneously if desired. Hence, to avoid further deterioration of pork characteristics, appropriate selection of traits should be considered.

Genetic Variation of Flower Production in Breeding Seedling Seed Orchards of Quercus acuta and Q. glauca

  • Jeon, Koeun;Ro, Hee Seung;Kim, Ye-Ji;Gu, Da-Eun;Park, Ji-Min;Ryu, Sungryul;Kang, Kyu-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.2
    • /
    • pp.102-109
    • /
    • 2022
  • This study was conducted to test the significant difference of fertility variation among families and to select superior families for acorn production in the breeding seedling seed orchards (BSSOs) of Quercus acuta and Quercus glauca. The seed orchards were located in Jeju island and established by seedlings raised from selected parents for genetic testing in 2006. In the spring of 2021, the numbers of female and male flower were counted from 5 to 10 individuals per family in the BSSOs. To test statistical significance of which parameter is not satisfied through the normality test, we used a nonparametric analysis. Correlation analysis was performed to quantify the association between female and male flower production. As the results, the significant difference of flower production among families was found in both seed orchards. The averages of female flower production were 65.3 and 181.9 in Q. acuta and Q. glauca. The positive Spearman's rank correlation was existed between male and female flower production. Broad-sense heritability on female and male flower production were 0.191 and 0.147 in Q. acuta, and 0.285 and 0.068 in Q. glauca, respectively. Sexual asymmetry (e.g., maleness index) between female and male, and contribution variation among families (e.g., parental balance) were analyzed to find reasonable alternatives in the management of seed orchards. Effective population size of seed crops was predicted as a concept of status number. Loss of gene diversity (accumulation of group coancestry) would not be alarming in the BSSOs. Our results would be helpful to select breeding materials for establishing new seed orchards and to supply genetically improved seeds of evergreen oaks, which is one of the backbones of the strategy of carbon sink in the 2050 Carbon Neutrality of Korea Forest Service.

Effects of Halogenated Compounds, Organic Acids and Unsaturated Fatty Acids on In vitro Methane Production and Fermentation Characteristics

  • Choi, N.J.;Lee, S.Y.;Sung, H.G.;Lee, S.C.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1255-1259
    • /
    • 2004
  • The objective of this study was to evaluate the effects of halogenated compounds, organic acids, unsaturated fatty acids and their mixtures on in vitro methane production and fermentative characteristics of mixed rumen microorganisms. Agents used in two in vitro experiments were bromoethanesulfonic acid (BES) and pyromellitic diimide (PMDI) as halogenated compound, fumarate and malate as organic acid, and linoleic acid and linolenic acid as unsaturated fatty acid sources. Ruminal fluid collected from a Holstein steer fed tall fescue and concentrate mixtures was incubated at $39^{\circ}C$ for 48 h with addition of those materials. Single supplementation of halogenated compounds, organic acids or unsaturated fatty acids decreased in vitro methane production (p<0.05). The second experiment was designed to investigate effects of combination of one of halogenated compounds and either organic acids or fatty acids on methane production. Lower concentration of methane and lower A:P ratio were observed with PMDI compared with BES (p<0.01). In general medium pH, VFA, total gas and hydrogen production, and dry matter degradability were affected by addition of the same compounds. In addition, PMDI+malate treatment resulted in the highest molar proportion of propionate, and lowest A:P ratio and methane production (p<0.01). Hydrogen production was highest in PMDI+linolenic acid and lowest in BES+malate treatment (p<0.01). PMDI+malate combination was the most recommendable in reducing methane production without too much influence on digestibility under conditions of present studies.

Sustainability Evaluation for Shellfish Production in Gamak Bay Based on the Systems Ecology 1. EMERGY Evaluation for Shellfish Production in Gamak Bay (시스템 생태학적 접근법에 의한 가막만 패류생산의 지속성 평가 1. 가막만 패류양식의 에머지 평가)

  • Oh, Hyun-Taik;Lee, Suk-Mo;Lee, Won-Chan;Jung, Rae-Hong;Hong, Suk-Jin;Kim, Nam-Kook;Tilburg, Charles
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.841-856
    • /
    • 2008
  • This research outlines a new method for evaluation of shellfish production in Gamak Bay based on the concept of EMERGY. Better understanding of those environmental factors influencing oyster production and the management of oyster stocks requires the ability to assess the real value of environmental sources such as solar energy, river, tide, wave, wind, and other physical mechanisms. In this research, EMERGY flows from environment sources were 76% for shellfish aquaculture in Gamak Bay. EMERGY yield ratio, Environmental Loading Ratio, and Sustainability Index were 4.26, 0.31 and 13.89, respectively. Using the Emergy evaluation data, the predicted maximum shellfish aquaculture production in Gamak Bay and the FDA (Food and Drug Administration, U.S.) designated area in Gamak Bay were 10,845 ton/y and 7,548 ton/yr, respectively. Since the predicted shellfish production was approximately 1.3 times more than produced shellfish production in 2005, the carrying capacity of Gamak Bay is estimated to be 1.3 times more than the present oyster production.

Effects of aeration and centrifugation conditions on omega-3 fatty acid production by the mixotrophic dinoflagellate Gymnodinium smaydae in a semi-continuous cultivation system on a pilot scale

  • Ji Hyun You;Hae Jin Jeong;Sang Ah Park;Se Hee Eom;Hee Chang Kang;Jin Hee Ok
    • ALGAE
    • /
    • v.39 no.2
    • /
    • pp.109-127
    • /
    • 2024
  • High production and efficient harvesting of microalgae containing high omega-3 levels are critical concerns for industrial use. Aeration can elevate production of some microalgae by providing CO2 and O2. However, it may lower the production of others by generating shear stress, causing severe cell damage. The mixotrophic dinoflagellate Gymnodinium smaydae is a new, promising microalga for omega-3 fatty acid production owing to its high docosahexaenoic acid content, and determining optimal conditions and methods for high omega-3 fatty acid production and efficient harvest using G. smaydae is crucial for its commercial utilization. Therefore, to determine whether continuous aeration is required, we measured densities of G. smaydae and the dinoflagellate prey Heterocapsa rotundata in a 100-L semi-continuous cultivation system under no aeration and continuous aeration conditions daily for 9 days. Furthermore, to determine the optimal conditions for harvesting through centrifugation, different rotational speeds of the continuous centrifuge and different flow rates of the pump injecting G. smaydae + H. rotundata cells into the centrifuge were tested. Under continuous aeration, G. smaydae production gradually decreased; however, without aeration, the production remained stable. Harvesting efficiency and the dry weights of omega-3 fatty acids of G. smaydae + H. rotundata cells at a rotational speed of 16,000 rpm were significantly higher than those at 2,000-8,000 rpm. However, these parameters did not significantly differ at injection pump flow rates of 1.0-4.0 L min-1. The results of the present study provide a basis for optimized production and harvest conditions for G. smaydae and other microalgae.