• Title/Summary/Keyword: national history

Search Result 5,763, Processing Time 0.033 seconds

The Study on Foundation Remains(Jeoksim) According to Types of Buildings of Gyeongbok Palace (경복궁 건물 유형에 따른 적심 연구)

  • Choi, In Hwa
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.3
    • /
    • pp.154-175
    • /
    • 2009
  • At the present state, studies on Gyeongbok palace are being done with history of architecture, records, and art. However, these studies have limits that they can only depend on existing buildings and record, which make it hard to research whole aspect of palaces. The foundation remains(Jeoksim) of Gyeongbok palace in the ground gives important clues that can fill the gaps of these studies. Thus I analysed jeoksim of Gyeongbok palace, assorted them by type, scale, material, and construction method. I examined jeoksim used by various types of building, and looked at changes by periods. Jeoksims are classified in 21 types. The foundation(jeoksim) varies according to types of buildings, building types and material of jeoksim also varies along the periods, and the fact proves certain peroid of time has its own jeoksim style in fashion. Jeoksims of Gyeongbok palace are divided into round-shape(I), rounded square-shape(II), rectangular-shape(III), square-shape(IV), and whole foundation of building(V) by the plane shape. They can be divided again into 21 types by construction techniques and materials used. During early Joseon(I), only three types of jeoksim; round-shape riprap jeoksim(1-1), II-1(rounded square-shape), II-2a(rounded square-shape riprap+roofingingtile brick), had been built, but as 19th century begun, all 21 types of jeoksim had built. In 19th century during Emperor Gojong, different types of jeoksim by periods were built, and especially different materials were used. During Gojong year 2(1865)~year 5(1868), in which Gyeongbok palace were rebuilt, 7 out of 10 types of jeoksim used piece of roofinging tile and brick mixture, in contrast, during Gojong year 10(1873)~13(1876), or 25(1888), 3 out of 5 types of jeoksim used sandy soil with mixture of plaster. Meanwhile palace buildings have different names by the class of owner and use such as Jeon, Dang, Hap, Gak, Jae, Heon, Nu, and Jeong, which were classified by types and buildings were built according to each level. With an analysis of jeoksim by its building types, I ascertained that jeoksim were built differently in accordance to building types(Jeon, Dang, Hap, Gak, Jae, Heon, Nu, and Jeong). By the limitation of present document, only some types of buildings such as Jeon, Dang, Gak, Bang were confirmed, as for Jeon and Gak, square-shape(IV) built with rectangular parallelepiped stone, and for Dang and Bang, rounded square-shape(IV) built with roofinginginging tile and riprap were commonly used. From the fact that other jeoksim with uncertain building names, were mostly built in early Joseon, we learn that round-shape riprap jeoksim(1-1) were commonly built. Therefore, the class of building was higher if the owner was in higher class, jeoksim is also considered to be built with the strongest and best material. And for Dang and Bang, rounded square-shape jeoksim were used, Dang has lots of II-2a (riprap + piece of roofing tile and brick rounded square-shape) type which mainly used riprap and piece of roofing tile and brick, but Bang has lots of II-2b (piece of roofing tile and brick+(riprap+piece of roofing tile and brick rounded square-shape), which paved piece of roofing tile and brick by 15~20cm above. These jeoksim by building types were confirmed to have changed its construction type by period. As for Jeon and Gak, they were built with round-shape riprap jeoksim(1-1) in early Joseon(14~15c), but in late Joseon(19c), various types of Jeoksim were built, especially square-shape(IV) were commonly built. For Dang, only changes in later Joseon were confirmed, jeoksim built in Gojong year 4(1867) mostly used mixture of riprap and piece of roofing tile and brick. In Gojong year 13(1876) or year 25(1888), unique type of plaster with sand and coal and soil layered jeoksim were built that are not found in any other building types. Through this study, I learned that various construction types of jeoksim and material were developed in later Joseon compare to early Joseon. This states that construction technique of building foundation of palace has upgraded. Above all, I learned jeoksim types are all different for various kinds of buildings. This tells us that when they constructed foundation of building, they used pre-calculated construction technique.

A Review Examining the Dating, Analysis of the Painting Style, Identification of the Painter, and Investigation of the Documentary Records of Samsaebulhoedo at Yongjusa Temple (용주사(龍珠寺) <삼세불회도(三世佛會圖)> 연구의 연대 추정과 양식 분석, 작가 비정, 문헌 해석의 검토)

  • Kang, Kwanshik
    • MISULJARYO - National Museum of Korea Art Journal
    • /
    • v.97
    • /
    • pp.14-54
    • /
    • 2020
  • The overall study of Samsaebulhoedo (painting of the Assembly of Buddhas of Three Ages) at Yongjusa Temple has focused on dating it, analyzing the painting style, identifying its painter, and scrutinizing the related documents. However, its greater coherence could be achieved through additional support from empirical evidence and logical consistency. Recent studies on Samsaebulhoedo at Yongjusa Temple that postulate that the painting could have been produced by a monk-painter in the late nineteenth century and that an original version produced in 1790 could have been retouched by a painter in the 1920s using a Western painting style lack such empirical proof and logic. Although King Jeongjo's son was not yet installed as crown prince, the Samsaebulhoedo at Yongjusa Temple contained a conventional written prayer wishing for a long life for the king, queen, and crown prince: "May his majesty the King live long / May her majesty the Queen live long / May his highness the Crown Prince live long" (主上殿下壽萬歲, 王妃殿下壽萬歲, 世子邸下壽萬歲). Later, this phrase was erased using cinnabar and revised to include unusual content in an exceptional order: "May his majesty the King live long / May his highness the King's Affectionate Mother (Jagung) live long / May her majesty the Queen live long / May his highness the Crown Prince live long" (主上殿下壽萬歲, 慈宮邸下壽萬歲, 王妃殿下壽萬歲, 世子邸下壽萬歲). A comprehensive comparison of the formats and contents in written prayers found on late Joseon Buddhist paintings and a careful analysis of royal liturgy during the reign of King Jeongjo reveal Samsaebulhoedo at Yongjusa Temple to be an original version produced at the time of the founding of Yongjusa Temple in 1790. According to a comparative analysis of formats, iconography, styles, aesthetic sensibilities, and techniques found in Buddhist paintings and paintings by Joseon court painters from the eighteenth and nineteenth centuries, Samsaebulhoedo at Yongjusa Temple bears features characteristic of paintings produced around 1790, which corresponds to the result of analysis on the written prayer. Buddhist paintings created up to the early eighteenth century show deities with their sizes determined by their religious status and a two-dimensional conceptual composition based on the traditional perspective of depicting close objects in the lower section and distant objects above. This Samsaebulhoedo, however, systematically places the Buddhist deities within a threedimensional space constructed by applying a linear perspective. Through the extensive employment of chiaroscuro as found in Western painting, it expresses white highlights and shadows, evoking a feeling that the magnificent world of the Buddhas of the Three Ages actually unfolds in front of viewers. Since the inner order of a linear perspective and the outer illusion of chiaroscuro shading are intimately related to each other, it is difficult to believe that the white highlights were a later addition. Moreover, the creative convergence of highly-developed Western painting style and techniques that is on display in this Samsaebulhoedo could only have been achieved by late-Joseon court painters working during the reign of King Jeongjo, including Kim Hongdo, Yi Myeong-gi, and Kim Deuksin. Deungun, the head monk of Yongjusa Temple, wrote Yongjusa sajeok (History of Yongjusa Temple) by compiling the historical records on the temple that had been transmitted since its founding. In Yongjusa sajeok, Deungun recorded that Kim Hongdo painted Samsaebulhoedo as if it were a historical fact. The Joseon royal court's official records, Ilseongnok (Daily Records of the Royal Court and Important Officials) and Suwonbu jiryeong deungnok (Suwon Construction Records), indicate that Kim Hongdo, Yi Myeong-gi, and Kim Deuksin all served as a supervisor (gamdong) for the production of Buddhist paintings. Since within Joseon's hierarchical administrative system it was considered improper to allow court painters of government position to create Buddhist paintings which had previously been produced by monk-painters, they were appointed as gamdong in name only to avoid a political liability. In reality, court painters were ordered to create Buddhist paintings. During their reigns, King Yeongjo and King Jeongjo summoned the literati painters Jo Yeongseok and Kang Sehwang to serve as gamdong for the production of royal portraits and requested that they paint these portraits as well. Thus, the boundary between the concept of supervision and that of painting occasionally blurred. Supervision did not completely preclude painting, and a gamdong could also serve as a painter. In this light, the historical records in Yongjusa sajeok are not inconsistent with those in Ilseongnok, Suwonbu jiryeong deungnok, and a prayer written by Hwang Deok-sun, which was found inside the canopy in Daeungjeon Hall at Yongjusa Temple. These records provided the same content in different forms as required for their purposes and according to the context. This approach to the Samsaebulhoedo at Yongjusa Temple will lead to a more coherent explanation of dating the painting, analyzing its style, identifying its painter, and interpreting the relevant documents based on empirical grounds and logical consistency.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF