• Title/Summary/Keyword: narrow bandwidth

Search Result 336, Processing Time 0.027 seconds

Design of a Narrow-Band Bandpass Filter Using Microstrip Open-Loop Resonators With Coupled and Crossing Lines (결합 및 교차 선로를 갖는 마이크로스트립 개방루프 공진기를 이용한 협대역 대역통과 여파기 설계)

  • 안승현;이영구;이문수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.1011-1016
    • /
    • 2001
  • In this paper, a narrow-band bandpass filter using microstrip open-loop resonators with coupled and crossing lines is designed and fabricated. This filter has many advantages such as compact in size, low weight and the characteristic of the elliptic-function narrow-band bandpass filtering. The configuration consists of two identical microstrip open loop resonators, coupled line and crossing line. By using open loop resonators, the size of the filter can be reduced about 50% compared with the ring resonators. A crossing line gives two notchs in the stopband, which have sharp selectivity in the passband. Centered at 2.455GHz, the calculated microstrip bandpass filter shows a bandwidth of 1.22%, which makes it very attractive for application in the wireless LAN. The filter is fabricated by photo-etching process. The fabricated bandpass filter shows that the bandwidth is 0.85% for 2.458GHz and the size is only $2.6cm\times1cm$.

  • PDF

Design and Fabrication of Microstrip Patch Antenna with T-shaped Slits for GPS (T형 슬릿을 갖는 GPS 수신용 마이크로스트립 패치 안테나 설계 및 제작)

  • Lee Eun-Jin;Lee Kwoun-Ig;Kim Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.5 s.347
    • /
    • pp.169-175
    • /
    • 2006
  • In this paper, a microstrip patch antenna with the T-shaped slits is designed and fabricated for GPS. The resonant frequency of the microstrip patch antenna with the slits is lower than that of a microstrip patch antenna without the slits so it can be reduced the size of patch. In order to calculate resonant frequency of the microstrip patch antenna with the slits, the resonant frequency formulas are derived from the surface current distribution on microstrip patch antenna. Using the Ensemble 6.0 simulation tool, the accuracy of approximate equations is verified. The microstrip patch antenna with the slits is designed by using these equations. The size of the designed antenna with T-shaped slits can be reduced to 29% compared with that without the slits. The microstrip patch antenna with slits have a very narrow bandwidth. In order to improve the narrow bandwidth of microstrip patch antennas with the slits, a microstrip patch antenna with rectangular slot is proposed. As the result of the measurements, the resonant frequency of the proposed microstrip patch antenna with the T-shaped slits is 1.575GHz and the bandwidth is about 50MHz.

Four-pass dye laser amplifier for the direct pulsed amplification of a tunable narrow-bandwidth continuous-wave laser (좁은 선폭을 갖는 파장가변 연속파 레이저의 펄스형 증폭을 위한 사중경로 색소 레이저 증폭기)

  • 이재용;이해웅;유용심;한재원
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.162-168
    • /
    • 1999
  • A new design of four-pass dye laser amplifier affording a narrow-bandwidth pulsed output is demonstrated to suppress the amplified spontaneous emission(ASE) carried by the amplifier output and reduce the possibility of parasitic oscillation in the amplifier. By the direct pulsed amplification of a cw 100 mW dye laser under a Q-switched doubled Nd:YAG laser pumping with energy of 5.6 mJ/pulse, high-peak-power pulsed output with 1.5-mJ energy in 130-MHz bandwidth is obtained corresponding to a power gain greater than $2{\times}10^6$ and an energy efficiency of 27%. The ASE ratio in the four-pass amplifier output is dramatically reduced by using a diffraction grating in the amplifier. Compared with the results obtained from the normal operation of the amplifier with no frequency-selective device, the ASE ratio is reduced by a factor in excess of 10 to remain under 1.5% of the amplifier output whereas the total output energy is slightly increased by ~4%.

  • PDF

5 GHz Bow-tie-shaped Meander Slot Antenna

  • Wi, Sang-Hyuk;Kim, Jung-Min;Yoo, Tae-Hoon;Park, Jae-Yeong;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.50-55
    • /
    • 2002
  • In this paper, Ive propose a bow-tie-shaped meander slot antenna find by a microstrip line to achieve compact size as well as wideband characteristic. While conventional bow-tie slot antennas exhibit wide band characteristic, they have relatively large size. On the other hand, the meander slot antennas are very small, but they reveal quite narrow bandwidth (typically less than 1 %). To realize miniaturized antennas balling large bandwidth, combination of the bow-tie slot and the meander slot geometries is proposed in this paper. Theoretical results show that the proposed antenna with uniform slot width is 65.5 % smaller than that of the conventional bow-tie antenna in size, while the bandwidth is 3 times larger than that of the meander slot antenna. Moreover, the non-uniform slot width antenna shows 60 % smaller in size and about 3.5 times wider in bandwidth than the previous antennas. Measured antenna performance reveals excellent agreement with the predicted values.

Performance of a Planar Leaky-Wave Slit Antenna for Different Values of Substrate Thickness

  • Hussain, Niamat;Kedze, Kam Eucharist;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.202-207
    • /
    • 2017
  • This paper presents the performance of a planar, low-profile, and wide-gain-bandwidth leaky-wave slit antenna in different thickness values of high-permittivity gallium arsenide substrates at terahertz frequencies. The proposed antenna designs consisted of a periodic array of $5{\times}5$ metallic square patches and a planar feeding structure. The patch array was printed on the top side of the substrate, and the feeding structure, which is an open-ended leaky-wave slot line, was etched on the bottom side of the substrate. The antenna performed as a Fabry-Perot cavity antenna at high thickness levels ($H=160{\mu}m$ and $H=80{\mu}m$), thus exhibiting high gain but a narrow gain bandwidth. At low thickness levels ($H=40{\mu}m$ and $H=20{\mu}m$), it performed as a metasurface antenna and showed wide-gain-bandwidth characteristics with a low gain value. Aside from the advantage of achieving useful characteristics for different antennas by just changing the substrate thickness, the proposed antenna design exhibited a low profile, easy integration into circuit boards, and excellent low-cost mass production suitability.

Design and fabrication of holographic combiner for automotive head-up display (Head-Up Display 용 홀로그래픽 광결합기의 설계 및 제작)

  • 유호식;정만호
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.120-127
    • /
    • 1999
  • We discussed two main types-conformal and non-conformal (powered) - of holographic combiner. A theoretical model based on the Kogelnik's coupled wave theory was used to illustrate bandwidth and efficiency properties. Also we showed numerical values for the aberrations that are induced by a wavelength shift from construction to reconstruction and found optimum coordinates to reduce the chrolatic aberation of construction beams using aberration balancing techniques. The holographic combiner manufactured in conformal type with 60$^{\circ}$ incidence angle at 514.5 nm had narrow angular bandwidth (FWHM) of 4.1" and spectral bandwidth of 11.4 nm, while non-conformal one with 50$^{\circ}$, 30$^{\circ}$ incidence angle at 514.5 nm showed spectral and angular bandwidth of 10.7 nm and 5.5$^{\circ}$, respectively.vely.

  • PDF

A Design of Wide-Bandwidth LDO Regulator with High Robustness ESD Protection Circuit

  • Cho, Han-Hee;Koo, Yong-Seo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1673-1681
    • /
    • 2015
  • A low dropout (LDO) regulator with a wide-bandwidth is proposed in this paper. The regulator features a Human Body Model (HBM) 8kV-class high robustness ElectroStatic Discharge (ESD) protection circuit, and two error amplifiers (one with low gain and wide bandwidth, and the other with high gain and narrow bandwidth). The dual error amplifiers are located within the feedback loop of the LDO regulator, and they selectively amplify the signal according to its ripples. The proposed LDO regulator is more efficient in its regulation process because of its selective amplification according to frequency and bandwidth. Furthermore, the proposed regulator has the same gain as a conventional LDO at 62 dB with a 130 kHz-wide bandwidth, which is approximately 3.5 times that of a conventional LDO. The proposed device presents a fast response with improved load and line regulation characteristics. In addition, to prevent an increase in the area of the circuit, a body-driven fabrication technique was used for the error amplifier and the pass transistor. The proposed LDO regulator has an input voltage range of 2.5 V to 4.5 V, and it provides a load current of 100 mA in an output voltage range of 1.2 V to 4.1 V. In addition, to prevent damage in the Integrated Circuit (IC) as a result of static electricity, the reliability of IC was improved by embedding a self-produced 8 kV-class (Chip level) ESD protection circuit of a P-substrate-Triggered Silicon Controlled Rectifier (PTSCR) type with high robustness characteristics.

Designing Optimal Pulse-Shapers for Ultra-Wideband Radios

  • Luo, Xiliang;Yang , Liuqing;Giannakis, Georgios-B.
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.344-353
    • /
    • 2003
  • Ultra-wideband (UWB) technology is gaining increasing interest for its potential application to short-range indoor wireless communications. Utilizing ultra-short pulses, UWB baseband transmissions enable rich multipath diversity, and can be demodulated with low complexity receivers. Compliance with the FCC spectral mask, and interference avoidance to, and from, co-existing narrow-band services, calls for judicious design of UWB pulse shapers. This paper introduces pulse shaper designs for UWB radios, which optimally utilize the bandwidth and power allowed by the FCC spectral mask. The resulting baseband UWB systems can be either single-band, or, multi-band. More important, the novel pulse shapers can support dynamic avoidance of narrow-band interference, as well as efficient implementation of fast frequency hopping, without invoking analog carriers.

Design and Implementation of the Dual-Mode Type Reliable PLC Modem Chip (듀얼 모드형 고신뢰 PLC 모뎀 칩 설계 및 구현)

  • Lee, Won-Tae;Choi, Sung-Soo;Yun, Sung-Ha;Rhee, Young-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.488-493
    • /
    • 2008
  • This paper represents a dual-mode type transmission technique for a high reliable narrow-band power line communication(PLC) modem, and its design and implementation of a system-on-chip(SoC). The proposed transmission technique is based on a Chirp modulation for the purpose of overcoming time variations of power line channel environments in the narrow-bandwidth of the frequency range of 95-145.5 kHz. The designed modem is fabricated utilizing a mixed 0.18 ${\mu}m$ CMOS technology. Especially, according to the power line channel environments the data transmission rate can be selectively changed into 2.5 kbps and 480 bps. The total hardware complexity of the implemented chip is about 50,000 gates, the power consumption is about 26mW, and the operating frequency is up to 5.12 MHz.

Three-dimensional Binocular Holographic Display Using Liquid Crystal Shutter

  • Kim, Hyun-Eui;Kim, Hee-Seung;Jeong, Kyeong-Min;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.345-351
    • /
    • 2011
  • We present a novel approach to the holographic three-dimensional display using a liquid crystal shutter for binocular display applications. One of the difficult problems in implementing a binocular holographic three-dimensional display is the extremely narrow viewing angle. This problem is attributed to the spatial light modulator pixel number which restricts the maximum spatial bandwidth of the spatial light modulator. In our proposed method, a beam splitter and liquid crystal shutter are used to present two holograms of a three-dimensional scene to the corresponding eyes. The combination of holographic display and liquid crystal shutter can overcome the problem of the extremely narrow viewing angle, presenting threedimensional images to both eyes with correct accommodation depth cues.