• 제목/요약/키워드: naringenin

검색결과 170건 처리시간 0.031초

Naringenin modulates GABA mediated response in a sex-dependent manner in substantia gelatinosa neurons of trigeminal subnucleus caudalis in immature mice

  • Seon Ah Park;Thao Thi Phuong Nguyen;Soo Joung Park;Seong Kyu Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.73-81
    • /
    • 2024
  • The substantia gelatinosa (SG) within the trigeminal subnucleus caudalis (Vc) is recognized as a pivotal site of integrating and modulating afferent fibers carrying orofacial nociceptive information. Although naringenin (4',5,7-thrihydroxyflavanone), a natural bioflavonoid, has been proven to possess various biological effects in the central nervous system (CNS), the activity of naringenin at the orofacial nociceptive site has not been reported yet. In this study, we explored the influence of naringenin on GABA response in SG neurons of Vc using whole-cell patch-clamp technique. The application of GABA in a bath induced two forms of GABA responses: slow and fast. Naringenin enhanced both amplitude and area under curve (AUC) of GABA-mediated responses in 57% (12/21) of tested neurons while decreasing both parameters in 33% (7/21) of neurons. The enhancing or suppressing effect of naringenin on GABA response have been observed, with enhancement occurring when the GABA response was slow, and suppression when it was fast. Furthermore, both the enhancement of slower GABA responses and the suppression of faster GABA responses by naringenin were concentration dependent. Interestingly, the nature of GABA response was also found to be sex-dependent. A majority of SG neurons from juvenile female mice exhibited slower GABA responses, whereas those from juvenile males predominantly displayed faster GABA responses. Taken together, this study indicates that naringenin plays a partial role in modulating orofacial nociception and may hold promise as a therapeutic target for treating orofacial pain, with effects that vary according to sex.

왕벚나무 껍질로부터 Naringenin, Sakuranetin, Prunetin의 분리 및 함량 분석 (Isolation and Quantitative Analysis of Naringenin, Sakuranetin and Prunetin from the Barks of Prunus yedoensis)

  • 김은남;김성철;정길생
    • 생약학회지
    • /
    • 제50권3호
    • /
    • pp.226-231
    • /
    • 2019
  • Prunus yedoensis Matsum. (Rosaceae) has been used for cough, urticaria, pruritus, dermatitis, asthma and relaxation in traditional Korean medicine. In this study, naringenin, sakuranetin and prunetin were isolated from the barks of P. yedoensis and quantification were performed by using high performance liquid chromatography (HPLC) method with diode array detector. The structures of naringenin and sakuranetin, prunetin were identified NMR spectroscopic data analysis. The content of each compound was analyzed by HPLC and the analytical method was validated through linearity, precision, accuracy and specificity test. The result showed that calibration curves of three compounds naringenin, sakuranetin and prunetin indicated great linearity with a correlation coefficient ($R^2$) of 1.00, 1.00 and 0.99. Intra and inter day measurement accuracy of the three compounds ranged from 92.70 ~ 112.70%, and showed precision was less than 3%. Therefore, the content analysis showed that naringenin ($0.132{\pm}0.016%$), sakuranetin ($0.108{\pm}0.023%$), and prunetin ($0.059{\pm}0.014%$).

Flavonoid의 HT-29 대장암세포 증식 억제 효과 (Inhibitory Effects of Flavonoids on Growth of HT-29 Human Colon Cancer Cells)

  • 조영;최미용
    • 한국식품영양과학회지
    • /
    • 제44권3호
    • /
    • pp.338-346
    • /
    • 2015
  • 본 연구에서는 최근 식생활의 서구화로 인해 발병률이 급증하고 있는 대장암의 진행을 억제하거나 감소시키고 인체 대장암 세포인 HT-29의 증식을 억제하며, 세포사멸을 유도하는 천연소재를 알아보기 위해서 flavonoid가 HT-29 인체 대장암 세포의 apoptosis 유도 및 기전에 미치는 영향을 알아보았다. MTT assay 결과 apigenin, rutin, naringenin, myricetin을 $100{\mu}M$ 농도로 처리하였을 때 62.71, 75.78, 74.24, 77.61%로 이 중 naringenin이 대장암 세포 성장에 억제 효과가 가장 높은 실험 결과를 나타내었다. Caspase-3 activity에서는 naringenin이 241.46%로 가장 높은 활성을 나타내었다. 이를 바탕으로 세포사멸과 관련된 유전자를 확인하고자 대장암 세포에 flavonoid인 apigenin, rutin, naringenin, myricetin에 $100{\mu}M$ 농도로 처리한 후 RTPCR을 실시한 결과, 세포사멸의 주요한 조절인자인 Bcl-2 family 단백질 중 Bcl-2는 rutin에 의해 감소되었고 Bax는 myricetin에 의해 증가하였으며, p53은 naringenin이 높게 발현되었다. 또한 western blotting을 통해 flavonoid인 apigenin, rutin, naringenin, myricetin에 $100{\mu}M$ 농도로 처리한 결과, Bcl-2 family 단백질과 더불어 세포사멸 조절에 중요한 역할을 하는 활성형인 cleaved caspase-3은 모두 증가하였고, 그중 myricetin이, PARP은 naringenin, E-cadherin은 rutin이 각각 높은 발현 양상을 나타내었다. 이번 실험 결과를 통해 flavonoid가 세포사멸의 주요한 조절 인자인 Bcl-2 family 단백질의 발현이나 caspase의 활성 등을 조절하여 암세포 사멸인자인 Bcl-2의 발현은 감소시키고 Bax, p53, PARP의 발현을 증가시키는 것을 통해 대장암 세포의 apoptosis를 유도하였다. 또한 암세포의 전이와 관련된 E-cadherin의 발현도 조절하는 것을 관찰하였다. 이상의 연구를 통해 flavonoid가 대장암 세포의 증식을 억제하는 효과가 있음을 확인하였으며, 세포사멸과 관련된 기전을 규명하였다. 이를 기초자료로 일상에서 쉽게 섭취할 수 있는 식품에 많이 존재하며 비교적 독성과 부작용이 적은 flavonoid를 이용한 천연 항암제 개발 가능성을 제시하였고, 추후 대장암의 암예방제 및 암치료제로 개발될 수 있도록 추가 연구 수행이 필요할 것으로 사료된다.

Naringenin Inhibits Dimethylnitrosamine-Induced Hepatic Fibrosis in Rats

  • Lee, Mi-Hye;Shin, Mi-Ok;Yoon, Sik;Moon, Jeon-Ok
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.172.2-173
    • /
    • 2003
  • Naringenin, a phytoalexin found in grapefruit. has been reported to exhibit a wide range of pharmacological properties. The aim of the present study is to evaluate the protective effect of naringenin on hepatic fibrosis induced by dimethylnitrosamine (DMN) in rats. Fibrosis was induced by intraperitoneal injection of DMN. Naringenin was given orally at 20 mg/kg and 50 mg/kg daily for 4 weeks. (omitted)

  • PDF

Suppression of CYP1A1 Expression by Naringenin in Murine Hepa-1c1c7 Cells

  • Kim, Ji-Young;Han, Eun-Hee;Shin, Dong-Weon;Jeong, Tae-Cheon;Lee, Eung-Seok;Woo, Eun-Rhan;Jeong, Hye-Gwang
    • Archives of Pharmacal Research
    • /
    • 제27권8호
    • /
    • pp.857-862
    • /
    • 2004
  • Naringenin, dietary flavonoid, is antioxidant constituents of many citrus fruits. In the present study, we investigated the effect of naringenin on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible CYP1 A 1 gene expression in mouse hepatoma Hepa-1c1c7 cells. Naringenin alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, the TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and naringenin in a dose dependent manner. TCDD-induced CYP1A1 mRNA level was also markedly suppressed by naringenin. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and electrophoretic mobility shift assay revealed that naringe-nin reduced transformation of the aryl hydrocarbons receptor(AhR) to a form capable of specif-ically binding to the DRE sequence in the promoter of the CYP1A1 gene. These results suggest the down regulation of the CYP1A1 gene expression by either naringenin in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear AhR.

Restoration of the adipogenic gene expression by naringenin and naringin in 3T3-L1 adipocytes

  • Dayarathne, Lakshi A.;Ranaweera, Sachithra S.;Natraj, Premkumar;Rajan, Priyanka;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.55.1-55.17
    • /
    • 2021
  • Background: Naringenin and its glycoside naringin are well known citrus flavonoids with several therapeutic benefits. Although the anti-adipogenic effects of naringenin and naringin have been reported previously, the detailed mechanism underlying their anti-adipogenesis effects is poorly understood. Objectives: This study examined the anti-adipogenic effects of naringenin and naringin by determining differential gene expression patterns in these flavonoids-treated 3T3-L1 adipocytes. Methods: Lipid accumulation and triglyceride (TG) content were determined by Oil red O staining and TG assay. Glucose uptake was measured using a 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose fluorescent d-glucose analog. The phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl Co-A carboxylase (ACC) were observed via Western blot analysis. Differential gene expressions in 3T3-L1 adipocytes were evaluated via RNA sequencing analysis. Results: Naringenin and naringin inhibited both lipid accumulation and TG content, increased phosphorylation levels of both AMPK and ACC and decreased the expression level of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) in 3T3-L1 adipocytes. RNA sequencing analysis revealed that 32 up-regulated (> 2-fold) and 17 down-regulated (< 0.6-fold) genes related to lipid metabolism, including Acaca, Fasn, Scd1, Mogat1, Dgat, Lipin1, Cpt1a, and Lepr, were normalized to the control level in naringenin-treated adipocytes. In addition, 25 up-regulated (> 2-fold) and 25 down-regulated (< 0.6-fold) genes related to lipid metabolism, including Acaca, Fasn, Fabp5, Scd1, Srebf1, Hmgcs1, Cpt1c, Lepr, and Lrp1, were normalized to the control level by naringin. Conclusions: The results indicate that naringenin and naringin have anti-adipogenic potentials that are achieved by normalizing the expression levels of lipid metabolism-related genes that were perturbed in differentiated 3T3-L1 cells.

Beneficial effects of naringenin and morin on interleukin-5 and reactive oxygen species production in BALB/c mice with ovalbumin-induced asthma

  • Qi, Peng;Wei, Chunhua;Kou, Dianbo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권6호
    • /
    • pp.555-564
    • /
    • 2021
  • We investigated the effects of naringenin and morin on IL-5 and ROS production in PMA+ionomycin-treated EL-4 cells with the corroboration of their antioxidant and anti-inflammatory properties using an asthma-induced mouse model. The EL-4 cell line was used to study the outcomes of naringenin or morin, followed by cell viability studies. Western blot analysis and ELISA test were used to determine Th2 mediated cytokines. In vivo studies were carried out on BALB/c mice to induce allergic asthma using ovalbumin administered intraperitoneally. Intracellular ROS was determined using 2',7'-dichlorodihydrofluorescein diacetate, followed by serum enzymatic (AST and ALT) estimations and inflammatory cell count in the bronchoalveolar lavage fluid (BALF) and lung tissues. Histopathological studies were conducted to examine lung tissue-stained architecture. Our findings suggested that naringenin and morin significantly suppressed IL-5 and ROS production via various pathways. Interestingly, by reducing NFAT activity, naringenin and morin stimulated HO-1 expression, thereby suppressing IL-5 secretion due to regulating the transcription factor Nrf2 via P13/Akt or ERK/JNK signalling pathways in EL-4 cells, demonstrating the involvement of HO-1 expression in inhibiting asthmatic inflammation. The increased inflammatory cells in the BALF were substantially decreased by both naringenin and morin, followed by inhibition in the elevated Th-2 cytokines levels. The TNF-α protein levels in an allergic asthma mouse model were significantly reduced by suppressing Akt phosphorylation and eosinophil formation. Recent findings confirmed that naringenin and morin possess the potential to control asthma-related immune responses through antioxidant and anti-inflammatory properties, indicating potential therapeutic agents or functional foods.

오르트산 투여 마우스의 지질농도에 미치는 Hesperetin 및 Naringenin의 영향 (Effects of Hesperetin and Naringenin on Lipid Concentration in Orotic Acid Treated Mice)

  • 차재영;김석영;정순재;조영수
    • 생명과학회지
    • /
    • 제9권4호
    • /
    • pp.389-394
    • /
    • 1999
  • Male mice (ddY strain) were fed a laboratory chow diet containing 10% sucrose supplemented with orotic acid, hesperetin or naringenin at the 1% level for 14 days. the concentrations of liver triacylglycerol and cholesterol were significantly lower in the OA group than in the control group. When both flavonoids and orotic acid were administered simultaneously, the orotic acid-dependent decrease in liver triacylglycerol and cholesterol were attenuated slightly. The concentration of serum cholesterol in the orotic acid group or the control group was lower than in the orotic acid groups supplemented with hesperetin or naringenin. There were no significantly difference in body weight gain, diary food intake, and the serum concentrations of triacylglycerol and high-density-lipoprotein cholestrol. It was concluded that the inducement of fatty liver in mice failed to feeding a laboratory chow diet containing 10% sucrose supplemented with 1% orotic acid for 14 days.

  • PDF

Solubility Enhancement of Flavonoids by Cyclosophoraose Isolated from Rhizobium meliloti 2011

  • Kang Si-Mook;Lee Sang-Hoo;Kwon Chan-Ho;Jung Seun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.791-794
    • /
    • 2006
  • Cyclosophoraose (cyclic $\beta-(1,2)-glucan$, Cys) isolated from Rhizobium meliloti, a soil microorganism, was used as a solubility enhancer for flavonoids. The complexes of the cyclic oligosaccharide with flavonoids were confirmed through $^1H$ nuclear magnetic resonance (NMR) spectroscopic analysis. Flavonoids solubilized by Cys were quantitatively analyzed through high-performance liquid chromatography (HPLC). Among the flavonoids tested, the solubility of naringenin was greatly enhanced by Cys, compared with other compounds. The solubility of naringenin was enhanced about 7.1-fold by adding 10 mM Cys, compared with a control. $^1H$ NMR spectroscopic analysis indicated that the H-6 and H-8 protons, which are located on the A ring of naringenin, were greatly shifted upfield upon the complexation with Cys. This result suggested that Cys showed a regioselective interaction with the naringenin molecule upon the complexation, resulting in the solubility enhancement of naringenin.

Fermentation and Metabolic Pathway Optimization to De Novo Synthesize (2S)-Naringenin in Escherichia coli

  • Zhou, Shenghu;Hao, Tingting;Zhou, Jingwen
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1574-1582
    • /
    • 2020
  • Flavonoids have diverse biological functions in human health. All flavonoids contain a common 2-phenyl chromone structure (C6-C3-C6) as a scaffold. Hence, in using such a scaffold, plenty of high-value-added flavonoids can be synthesized by chemical or biological catalyzation approaches. (2S)-Naringenin is one of the most commonly used flavonoid scaffolds. However, biosynthesizing (2S)-naringenin has been restricted not only by low production but also by the expensive precursors and inducers that are used. Herein, we established an induction-free system to de novo biosynthesize (2S)-naringenin in Escherichia coli. The tyrosine synthesis pathway was enhanced by overexpressing feedback inhibition-resistant genes (aroGfbr and tyrAfbr) and knocking out a repressor gene (tyrR). After optimizing the fermentation medium and conditions, we found that glycerol, glucose, fatty acids, potassium acetate, temperature, and initial pH are important for producing (2S)-naringenin. Using the optimum fermentation medium and conditions, our best strain, Nar-17LM1, could produce 588 mg/l (2S)-naringenin from glucose in a 5-L bioreactor, the highest titer reported to date in E. coli.