• Title/Summary/Keyword: nargenicin

Search Result 2, Processing Time 0.015 seconds

Biological Evaluation of Nargenicin and Its Derivatives as Antimicrobial Anti-inflammatory Agents (토양 균주 발효 추출물 Nargenicin 및 그 유도체의 항생제 대체 효과능 평가)

  • Cho, Seung-Sik;Hong, Joon-Hee;Chae, Jung-Il;Shim, Jung-Hyun;Na, Chong-Sam;Yoo, Jin-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.469-481
    • /
    • 2014
  • IIn vitro antimicrobial and anti-inflammatory activities of nargenicin and its derivatives were investigated. Nargenicin, an unusual macrolide antibiotic with potent anti-MRSA (methicilin-resistant Staphylococcus aureus) activity, was purified from the culture broth of Nocardia sp. CS682. And variety of novel nargenicin derivatives was synthesized from nargenicin. Two compounds (4 and 5) exhibit a broad spectrum of antimicrobial activities against infectious bacteria. The antimicrobial activity of derivatives against fifteen organisms was assessed using the minimum inhibitory concentration (MIC). The MIC values were in the ranges of $0.15{\sim}80{\mu}g/mL$ (w/v) for compound 1 and 2, $5{\sim}80{\mu}g/mL$ (w/v) for compound 3, $1.25{\sim}40{\mu}g/mL$ (w/v) for compound 4, and $1.25{\sim}80{\mu}g/mL$ (w/v) for compound 5, depending on the pathogens studied. In vitro, we investigated cytotoxicity and inhibition of nitric oxide (NO) production of synthesized compounds 1-5 in Raw 264.7 cells. LPS-induced nitric oxide releases were significantly blocked by compound 3, 4 and 5 in a dose-dependent manner. At high concentrations ($5{\mu}g/mL$) compound 5 inhibited the NO production by 95%. Compound 4 inhibited the release of NO in LPS-activated Raw 264.7 cells by 75% at the concentration of $10{\mu}g/mL$. Compound 3 inhibited the release of NO in LPS-activated Raw 264.7 cells by 65% at the concentration of $100{\mu}g/mL$. On the other hand, nargenicin, compound 1 and 2 did not inhibit NO production. These results demonstrated that compound 4 and 5 displayed antimicrobial activity and blocked LPS-induced pro-inflammatory mediators such as NO in macrophages, which might be responsible for its therapeutic application.

Effect of Different Biosynthetic Precursors on the Production of Nargenicin $A_1$ from Metabolically Engineered Nocardia sp. CS682

  • Koju, Dinesh;Maharjan, Sushila;Dhakal, Dipesh;Yoo, Jin Cheol;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1127-1132
    • /
    • 2012
  • Nargenicin $A_1$ is a 28-membered polyketide macrolide, with antibacterial activity against methicillin-resistant Staphylococcus aureus, produced by Nocardia sp. CS682. In this study, the production of nargenicin $A_1$ was improved by enhancing the supply of different biosynthetic precursors. In Nocardia sp. CS682 (KCTC11297BP), this improvement was ~4.62-fold with the supplementation of 30 mM methyl oleate, 4.25-fold with supplementation of 15mM sodium propionate, and 2.81-fold with supplementation of 15 mM sodium acetate. In Nocardia sp. metK18 and Nocardia sp. CS682 expressing S-adenosylmethionine synthetase (MetK), the production of nargenicin $A_1$ was improved by ~5.57-fold by supplementation with 30 mM methyl oleate, 5.01-fold by supplementation with 15 mM sodium propionate, and 3.64-fold by supplementation with 15 mM sodium acetate. Furthermore, supplementing the culture broth of Nocardia sp. ACC18 and Nocardia sp. CS682 expressing the acetyl-CoA carboxylase complex (AccA2 and AccBE) with 30 mM methyl oleate, 15 mM sodium propionate, or 15 mM sodium acetate resulted in ~6.99-, 6.46-, and 5.58-fold increases, respectively, in nargenicin $A_1$ production. Our overall results showed that among the supplements, methyl oleate was the most effective precursor supporting the highest titers of nargenicin $A_1$ in Nocardia sp. CS682, Nocardia sp. metK18, and Nocardia sp. ACC18.