Lee, Seung Jin;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
한국진공학회:학술대회논문집
/
한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
/
pp.369-369
/
2016
A nanostructure composite is a highly suitable substance for photoacoustic ultrasound generation. This allows an input laser beam (typically, nanosecond pulse duration) to be efficiently converted to an ultrasonic output with tens-of-MHz frequency. This type of energy converter has been demonstrated by using a carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite film that exhibit high optical absorption, rapid heat transition, and mechanical durability, all of which are necessary properties for high-amplitude ultrasound generation. In order to develop the CNT-PDMS composite film, a high-temperature chemical vapor deposition (HTCVD) method has been commonly used so far to grow CNT and then produce a CNT-PDMS composite structure. Here, instead of the complex HTCVD, we use a mixed solution of hydrophobic multi-walled CNT and dimethylformamid (DMF) and fabricate a solution-processed CNT-PDMS composite film over a spherically concave substrate, i.e. a focal energy converter. As the solution process can be applied over a large area, we could easily fabricate the focal transmitter that focuses the photoacoustic output at the moment of generation from the CNT-PDMS composite layer. With this method, we developed photoacoustic energy converters with a large diameter (>25 mm) and a long focal length (several cm). The lens performance was characterized in terms of output pressure amplitude for an incident pulsed laser energy and focal spot dimension in both lateral and axial. Due to the long focal length, we expect that the new lens can be applied for long-range ultrasonic treatment, e.g. biomedical therapy.
다양한 아민 그룹으로 개질된 다중벽 탄소나노튜브(이하 MWNT) 지지체를 기반으로 하여 페놀 화합물을 검출하기 위한 티로시나아제가 고정된 바이오센서를 개발하였다. 방사선 중합법을 이용하여 MWNT에 글리시딜메타크릴레이트를 중합한 후 중합 사슬의 아미노화 반응을 통해 MWNT에 다양한 아민 그룹을 도입시켰다. 이렇게 제조된 물질의 물리적, 화학적 특성은 SEM, XPS 그리고 TGA에 의해 평가되었다. 그리고 제조된 물질을 기반으로 제작된 티로시나아제가 고정화된 바이오센서의 전기화학적 특성도 평가하였다. 본 효소 바이오센서는 0.1-0.9 mM의 페놀을 검출할 수 있다. 결합효과, pH, 온도 그리고 다양한 페놀화합물에 대한 반응과 같은 여러 가지 변수에 대하여도 최적화하였고 상용 레드와인에서의 페놀화합물 검출도 연구하였다.
차세대 반도체 소자로 관심을 받고 있는 CNTFET은 소자의 소스와 드레인 사이에 CNT를 배치시켜, 기존 MOSFET보다 작은 전압으로 전자의 ballstic 혹은 near-ballastic 이동을 가능하게 만든 반도체 소자이다. CNTFET의 성능을 높이기 위해서는 많은 수의 CNT를 CNTFET 안에 높은 밀도로 배치해야 하기 때문에 CNT의 밀도를 증가시키기 위한 다양한 공정들이 개발되고 있다. 최근, 방향성 수축 전송 방법이 개발되어 CNTFET의 전류 밀도를 150uA/um까지 향상시켜줄 수 있음을 보이고 있어, CNTFET 기반 집적회로의 구현 가능성을 높이고 있다. 본 논문에서는, 방향성 수축 전송 방법으로 CNTFET 소자를 만들 경우, CNTFET 회로의 성능이 기존 MOSFET의 성능에 비해 얼마나 향상시킬 수 있는지 그 성능을 평가할 수 있는 방안을 논의하고자 한다.
본 연구에서는 CNT-Co 복합체를 이용한 전해-자기(EP-MAP) 복합가공 공정을 개발하였다. CNT-Co 복합체는 높은 강도와 뛰어난 전기적 성질을 가지는 소재이기 때문에 전해-자기 복합가공의 연마재 및 전극으로 적합하다. 전해-자기 복합가공의 시너지 효과를 평가하기 위해서 각 실험조건하에서 특성평가 실험이 수행되었으며, 각 실험인자는 자기력, 전해액, 공구의 회전속도, 전해전압, 간극 등이 있다. 그 결과 CNT-Co 복합체와 화학적 반응이 없는 $NaNO_3$ 가 본 공정의 가장 적절한 전해액으로 선정되었다. 그리고 높은 자기력은 가공중의 CNT-Co 복합체내에 전해액 유동을 방해하는 인자이다. 이로 인해 공작물의 표면상의 가공부위에 열에너지가 상승하게 되고 공작물 표면손상과 피팅현상이 발생하여 가공효율성이 떨어지게 된다.
본 연구에서는 시멘트 페이스트에 혼합된 나노 섬유가 경화된 시멘트페이스트의 압축강도와 인장강도에 미치는 영향을 연구하였다. 2종류의 나노 섬유를 사용하였다. 나일론 66 나노 섬유와 카본 나노 튜브로 보강된 나일론 66 나노 섬유를 전기방사로 제작하여 시멘트 파우더에 각각 혼합하였다. 물-시멘트비 0.5의 시멘트 페이스트 시편을 제작하고 28일간 양생하였다. 실험 결과, 나노섬유의 혼합이 시멘트 페이스트 시편의 압축강도와 인장강도를 증가시킴을 확인하였다. 나노 섬유의 보강 매카니즘을 확인하기 위해 주사전자현미경(SEM) 분석, 전계방사 투과전자 현미경(FE-TEM) 분석 및 열 중량 분석(TGA)을 수행하여 나노섬유를 포함한 시멘트 페이스트의 미세 구조를 분석하였다.
본 연구에서는 폴리프로팔렌(PP)/다중벽 탄소나노튜브(MWCNT) 복합체를 이축압출기를 사용하여 펠렛형 MWCNT를 20wt%까지 함량별로 제조하고, MWCNT가 20 wt% 첨가된 복합체를 마스터배치(M/B)로 사용하여 다시 PP와 컴파운딩하여 희석하였다. PP/MWCNT 복합체는 함량 변화에 따라 전기전도도 열전도도, 모폴로지, 열적, 고체 점탄성, 기계적 성질을 조사하였고, 또한 희석된 PP/MWCNT 복합체와 1 단계 PP/MWCNT 복합체 간의 물성을 비교하였다. 전기전도도와 열전도도는 MWCNT의 함량이 3 wt% 일 때 percolation threshold 현상을 보였고 M/B로 제조된 복합체가 더 우수한 전도도를 보였다. 복합체의 MWCNT 함량이 증가하면 비등온 결정화 온도 및 열분해 온도가 증가하였다. 모폴로지를 통하여 M/B로 제조된 복합체의 MWCNT 길이가 짧아진 것을 확인하였고, 이는 기계적 물성의 향상에 도움을 준 것으로 나타났다.
Flexible transparent conductive electrodes (TCEs) have recently attracted a great deal of attention owing to rapid advances in flexible electronic devices, such as flexible displays, flexible photovoltanics, and e-papers. As the performance and reliability of flexible electronics are critically affected by the quality of TCE films, it is imperative to develop TCE films with low resistivity and high transparency as well as high flexibility. Indium tin oxide (ITO) has been the most dominant transparent conducting material due to its high optical transparency and electrical conductivity. However, ITO is susceptible to cracking and delamination when it is bent or deformed. Therefore, various types of flexible TCEs, such as carbon nanotube, conducting polymers, graphene, metal mesh, Ag nanowires (NWs), and metal mesh have been extensively investigated. Among several options to replace ITO film, Ag NWs and metal mesh have been suggested as the promising candidate for flexible TCEs. In this paper, we focused on Ag NWs and metal mesh, and summarized the current development status of Ag NWs and metal mesh. The several critical issues such as high contact resistance and haze are discussed, and newly developed technologies to resolve these issues are also presented. In particular, the flexibility and durability of Ag NWs and metal mesh was compared with ITO electrode.
Hexadecane and exfoliated graphite nanoplate (xGnP)composite was prepared as a shape-stabilized phase change material (SSPCM) in a vacuum to develope thermal energy storage. The Hexadecane as an organic phase change material (PCM) is very stable against phase separation of PCM and has a melting point at $18^{\circ}C$ that is under the thermally comfortable temperature range in buildings. The xGnP is a porous carbon nanotube material with high thermal conductivity. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR)were used to confirm the chemical and physical stability of Hexadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter(DSC) and Thermogravimetric analysis (TGA). The specific heat of Hexadecane/xGnPSSPCM was $10.0J/g{\cdot}K$ at $21.8^{\circ}C$. The melting temperature range of melting and freezing were found to be $16-25^{\circ}C$ and $17-12^{\circ}C$. At this time, the laten heats of melting and freezing were 96.4J/g and 94.8J/g. The Hexadecane was impregnated into xGnP as much about 48.8% of Hexadecane/xGnP SSPCM's mass fraction.
Blood circulation is one of the most important life support functions of our body. It is essential to maintain healthy blood circulation as problems with blood circulation can lead to numerous diseases and serious complications. This study developed women's leggings with gradual compression and soft surface heating functions to improve blood circulation, and evaluated their performance and wearability. A silicon print pattern was developed to provide gradual compression, and a flexible heating surface coated with MWCNT (multi-walled carbon nanotube) conductive ink was fabricated for comfort and thermal effect. For the design, incision lines and materials were applied in consideration of aesthetic aspects, and design lines and colors were altered using a 3D program. The developed leggings showed that blood circulation can be improved when gradual compression and heating functions are simultaneously applied. Results were confirmed through measurements of clothing pressure, blood flow, and surface temperature. In the subjective wearability evaluation, it was confirmed that wearers felt gradual pressure, and they showed high satisfaction with wearability and design.
본 논문은 전기적 감지 방식 바이오센서의 개념을 리뷰하고, 의류 및 텍스트 기반의 바이오센서의 연구 사례를 조사하였다. 생체 신호를 측정 할 수 있는 바이오센서는 생물학적 감지 물질을 이용하여 생물학적 물질의 물리적, 화학적 특성을 감지하는 장치이다. 따라서 바이오센서를 사용하여 생체신호를 측정할 수 있는 웰니스 의류는 U-Health 서비스를 제공하는데 중요한 역할을 한다. 기존 센서와 다르게 바이오센서의 차별화된 특징은 선택적 반응과 생물학적 물질의 결합을 사용한다는 점이다. 이러한 바이오센서 중 전기적 감지 바이오센서는 전기 신호의 처리로 인해 크기가 매우 작아 유비쿼터스 환경을 조성하는데 이용될 수 있다. 따라서 웰니스 의류를 개발하기 위해 소형화가 쉬운 전기적 감지 바이오센서를 연구할 필요가 있다. 본 논문에서는 전기적 감지 바이오센서(전기화학적 방식, 나노와이어/탄소나노튜브 기반 FET 방식)에 대해 자세히 기술하였다. 마지막으로, 이러한 고찰을 통해 향후 웰니스 의류에 적용 가능할 바이오센서의 기술개발 방향을 제언하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.