• Title/Summary/Keyword: nanosized particles

Search Result 87, Processing Time 0.024 seconds

Low Dielectric Properties of Epoxy/Annealing $SiO_2$ Composites for Filler Contents Variation (Epoxy/Annealing $SiO_2$ Composites의 충진함량에 대한 저 유전특성)

  • Park, Jae-Jun;Ahn, Zu-No;Yun, Jong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.224-225
    • /
    • 2007
  • The Low dielectric properties of epoxy/Annealing $SiO_2$ composites using Annealing new material of nanosized amorphous particles were investigated as function frequency, temperature and filler contents composition. The dielectric constant decrease with increasing frequency and also increase with increasing ambient temperature. The dielectric constant decrease with increase annealing filler contents for epoxy base. The result of x-ray diffraction could obtained single crystal of annealing $SiO_2$ from 500nm amorphous $SiO_2$ powder.

  • PDF

Nano-cleaning of EUV Mask Using Amphoterically Electrolyzed Ion Water (화학양면성의 전해이온수를 이용한 극자외선 마스크의 나노세정)

  • Ryoo, Kun-kul;Jung, Youn-won;Choi, In-sik;Kim, Hyung-won;Choi, Byung-sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.34-42
    • /
    • 2021
  • Recent cleaning technologies of mask in extremely ultraviolet semiconductor processes were reviewed, focused on newly developed issues such as particle size determination or hydrocarbon and tin contaminations. In detail, critical particle size was defined and proposed for mask cleaning where nanosized particles and its various shapes would result in surface atomic ratio increase vigorously. A new cleaning model also was proposed with amphoteric behavior of electrolytically ionized water which had already shown excellent particle removing efficiency. Having its non-equilibrium and amphoteric properties, electrolyzed ion water seemed to oxidize contaminant surface selectively in nano-scale and then to lift up oxidized ones from mask surface very effectively. This assumption should be further investigated in future in junction with hydrogen bonding and cluster of water molecules.

Filling and Wiping Properties of Silver Nano Paste in Trench Layer of Metal Mesh Type Transparent Conducting Electrode Films for Touch Screen Panel Application (실버 나노분말을 이용한 메탈메쉬용 페이스트의 충전 및 와이핑 특성)

  • Kim, Gi-Dong;Nam, Hyun-Min;Yang, Sangsun;Park, Lee-Soon;Nam, Su-Yong
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.464-471
    • /
    • 2017
  • A metal mesh TCE film is fabricated using a series of processes such as UV imprinting of a transparent trench pattern (with a width of $2-5{\mu}m$) onto a PET film, filling it with silver paste, wiping of the surface, and heat-curing the silver paste. In this work nanosized (40-50 nm) silver particles are synthesized and mixed with submicron (250-300 nm)-sized silver particles to prepare silver paste for the fabrication of metal mesh-type TCE films. The filling of these silver pastes into the patterned trench layer is examined using a specially designed filling machine and the rheological testing of the silver pastes. The wiping of the trench layer surface to remove any residual silver paste or particles is tested with various mixture solvents, and ethyl cellosolve acetate (ECA):DI water = 90:10 wt% is found to give the best result. The silver paste with 40-50 nm Ag:250-300 nm Ag in a 10:90 wt% mixture gives the highest electrical conductance. The metal mesh TCE film obtained with this silver paste in an optimized process exhibits a light transmittance of 90.4% and haze at 1.2%, which is suitable for TSP application.

Measurement of distribution stability of binary nanofluids by zeta-potential (Zeta-potential을 이용한 이성분 나노유체의 분산안정도 측정)

  • Lee, Kang-Il;Jung, Chung-Woo;Kim, Hyun-Jun;Joeng, Jin-Hee;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.52-57
    • /
    • 2006
  • This study investigates the distribution stability of binary nanofluids where binary mixtures such as $NH_3/H_2O$ and $H_2O/LiBr$ solution are used as a base fluid. When a little amount of certain nanosized particles is added into a basefluid, the thermal conductivity of that mixture increases greatly. Such mixtures are named 'nanofluids' where nano-particles should be distributed stably and uniformly so the distribution stability of nanoparticles in nanofluids is one of the most important factors for nanofluid application. Therefore, binary nanofluids in which binary mixtures are applied as the basefluids are considered as working fluids. The kind and the concentration of nanoparticles, and the concentration of ammonia are considered as the key parameters. The objectives of this paper are to visualize the dispersed status of particles in binary nanofluids and to find the effect of key parameters on the distribution stability in the ammonia absorption system.

  • PDF

Synthesis and Electrochemical Performance of Mesoporous Hollow Sphere Shape LiMn2O4 using Silica Template (실리카 템플레이트를 이용하여 다공성 중공형태를 갖는 LiMn2O4 합성 및 전기화학적 특성 연구)

  • Ryu, Seong-Hyeon;Ryu, Kwang-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.184-190
    • /
    • 2011
  • $LiMn_2O_4$ with mesoporous hollow sphere shape was synthesized by precipitation method with silica template. The synthesized $LiMn_2O_4$ has nanosized first particle and mesoporous hollow sphere shape. Silica template was removed by chemical etching method using NaOH solution. When the concentration of NaOH solution was increased, first particle size of manganese oxide was decrease and confirmed mesoporous hollow shpere shape. X-ray diffraction(XRD) patterns revealed that the synthesized samples has spinel structure with Fd3m space group. In case the ratio of silica and maganese salt increased, the size of first particles was decreased. The tetragoanal $LiMn_2O_4$ with micron size was synthesized at ratio of silica and manganese salt over 1 : 9. The prepared samples were assembled as cathode materials of Li-ion battery with 2032 type coin cell and their electrochemical properties are examined by charge-discharge and cyclic performance. Electrochemical measurements show that the nano-size particles had lower capacity than micron-size particles. But, cyclic performance of nano-size particles had better than that of micron-size particles.

Characteristics of Pt, Pt-Ru and Pt-CeO2 Catalysts Supported on Carbon Nanotubes for Methanol Fuel Cell (탄소 나노튜브에 담지된 Pt, Pt-Ru 및 Pt-CeO2 메탄올 연료전지 촉매의 특성)

  • Hwang, Gui-Sung;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • Nanosized Pt, Pt-Ru and Pt-$CeO_2$ electrocatalysts supported on acid-treated carbon nanotube (CNT) were synthesized by microwave-assisted heating of polyol process using $H_2Cl_6Pt{\cdot}6H_2O$, $RuCl_3$, $CeCl_3$ precursors, respectively, and were characterized by XRD and TEM. And then the electrochemical activity of methanol oxidation for catalyst/CNT nanocomposite electrodes was investigated. The microwave assisted polyol process produced the nano-sized crystalline catalysts particles on CNT. The size of Pt supported on CNT was 7~12 nm but it decreased to 3~5 nm in which 10wt% sodium acetate was added as a stabilizer during the polyol process. This fine Pt catalyst particles resulted in a higher current density for Pt/CNT electrode. It was also found that 10 nm size of PtRu alloys were formed by polyol process and the onset potential decreased with Ru addition. Cyclic voltammetry analysis revealed that the $Pt_{75}Ru_{25}/CNT$ electrode had the highest electrochemical activity owing to a higher ratio of the forward to reverse anodic peak current. And the chronoamperemetry test showed that $Pt_{75}Ru_{25}$ catalyst had a good catalyst stability. The activity of Pt was also found to be improved with the addition of $CeO_2$.

Synthesis of Monodisperse ZnO Nanoparticles Using Semi-batch Reactor and Effects of HPC Affecting Particle Size and Particle Size Distribution (반회분식 반응을 이용한 단분산 ZnO 나노 입자의 제조 및 입자의 크기와 입도 분포에 영향을 미치는 HPC의 작용)

  • Rho, Seung Yun;Kim, Ki Do;Song, Gun Yong;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.274-279
    • /
    • 2006
  • To synthesize ZnO colloidal solution by a sol-gel process, zinc acetate ($C_{4}H_{6}O_{4}Zn{\cdot}2H_{2}O{\cdot}0.2\;mol$) and lithium hydroxide ($LiOH{\cdot}H_{2}O{\cdot}0.14\;mol$) in the ethanol were added to the solution containing a dispersing agent, hydroxypropyl cellulose (HPC). The nanosize and physical shape of the synthesized ZnO particles were determined by HPC acting as the dispersing agent. Nanosized ZnO particles were also obtained by a precipitation method based on zinc-2-ethylhexagonate. The precipitates were characterized by DLS, XRD, FE-SEM, and UV-vis. As the results, the ZnO colloids tend to self-assemble into a well-ordered hexagonal close-packed structure. The ZnO nanoparticles have an average diameter of nearly 40 nm with a narrow size distribution.

Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries

  • Lee, Jeong Beom;Chae, Oh. B.;Chae, Seulki;Ryu, Ji Heon;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.306-315
    • /
    • 2016
  • Amorphous vanadium titanates (aVTOs) are examined for use as a negative electrode in lithium-ion batteries. These amorphous mixed oxides are synthesized in nanosized particles (<100 nm) and flocculated to form secondary particles. The $V^{5+}$ ions in aVTO are found to occupy tetrahedral sites, whereas the $Ti^{4+}$ ions show fivefold coordination. Both are uniformly dispersed at the atomic scale in the amorphous oxide matrix, which has abundant structural defects. The first reversible capacity of an aVTO electrode ($295mAhg^{-1}$) is larger than that observed for a physically mixed electrode (1:2 $aV_2O_5$ | $aTiO_2$, $245mAhg^{-1}$). The discrepancy seems to be due to the unique four-coordinated $V^{5+}$ ions in aVTO, which either are more electron-accepting or generate more structural defects that serve as $Li^+$ storage sites. Coin-type Li/aVTO cells show a large irreversible capacity in the first cycle. When they are prepared under nitrogen (aVTO-N), the population of surface hydroxyl groups is greatly reduced. These groups irreversibly produce highly resistive inorganic compounds (LiOH and $Li_2O$), leading to increased irreversible capacity and electrode resistance. As a result, the material prepared under nitrogen shows higher Coulombic efficiency and rate capability.

Hydrogen Reduction Behavior and Microstructure Characteristics of Ball-milled CuO-Co3O4 Powder Mixtures (볼 밀링한 CuO-Co3O4 혼합분말의 수소환원 거동과 미세조직 특성)

  • Han, Ju-Yeon;Lee, Gyuhwi;Kang, Hyunji;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.410-414
    • /
    • 2019
  • The hydrogen reduction behavior of the $CuO-SCo_3O_4$ powder mixture for the synthesis of the homogeneous Cu-15at%Co composite powder has been investigated. The composite powder is prepared by ball milling the oxide powders, followed by a hydrogen reduction process. The reduction behavior of the ball-milled powder mixture is analyzed by X-ray diffraction (XRD) and temperature-programmed reduction at different heating rates in an Ar-10%H2 atmosphere. The scanning electron microscopy and XRD results reveal that the hydrogen-reduced powder mixture is composed of fine agglomerates of nanosized Cu and Co particles. The hydrogen reduction kinetics is studied by determining the degree of peak shift as a function of the heating rate. The activation energies for the reduction of the oxide powders estimated from the slopes of the Kissinger plots are 58.1 kJ/mol and 65.8 kJ/mol, depending on the reduction reaction: CuO to Cu and $SCo_3O_4$ to Co, respectively. The measured temperature and activation energy for the reduction of $SCo_3O_4$ are explained on the basis of the effect of pre-reduced Cu particles.

Effect of Pyrolysis temperature on TiO2 Nanoparticles Synthesized by a Salt-assisted Ultrasonic Spray Pyrolysis Process (염 보조 초음파 분무 열분해 공정으로 합성된 TiO2 나노입자의 특성에 열분해 온도가 미치는 영향)

  • Yoo, Jae-Hyun;Ji, Myeong-Jun;Park, Woo-Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.237-242
    • /
    • 2019
  • In this study, ultrasonic spray pyrolysis combined with salt-assisted decomposition, a process that adds sodium nitrate ($NaNO_3$) into a titanium precursor solution, is used to synthesize nanosized titanium dioxide ($TiO_2$) particles. The added $NaNO_3$ prevents the agglomeration of the primary nanoparticles in the pyrolysis process. The nanoparticles are obtained after a washing process, removing $NaNO_3$ and NaF from the secondary particles, which consist of the salts and $TiO_2$ nanoparticles. The effects of pyrolysis temperature on the size, crystallographic characteristics, and bandgap energy of the synthesized nanoparticles are systematically investigated. The synthesized $TiO_2$ nanoparticles have a size of approximately 2-10 nm a bandgap energy of 3.1-3.25 eV, depending on the synthetic temperature. These differences in properties affect the photocatalytic activities of the synthesized $TiO_2$ nanoparticles.