• Title/Summary/Keyword: nanoscale precipitates

Search Result 3, Processing Time 0.017 seconds

Direct Observation of Heterogeneous Nucleation in Al-Si-Cu-Mg Alloy Using Transmission Electron Microscopy and Three-dimensional Atom Probe Tomography

  • Hwang, Jun Yeon;Banerjee, Rajarshi;Diercks, David R.;Kaufman, Michael J.
    • Applied Microscopy
    • /
    • v.43 no.3
    • /
    • pp.122-126
    • /
    • 2013
  • The heterogeneous nucleation of the ${\Theta}^{\prime}$ phase on nanoscale precipitates has been investigated using a combination of three-dimensional atom probe tomography and high-resolution transmission electron microscopy. Two types of ${\Theta}^{\prime}$ phases were observed, namely small (~2 nm thick) cylindrical precipitates and larger (~100 nm) globular precipitates and both appear to be heterogeneously nucleated on the nanoscale precipitates. The composition and crystal structure of precipitates were directly analyzed by combination of two advanced characterization techniques.

Mechanical Properties in Rapidly Solidified Al-Nd-(Cu,Ag) Alloys with Mesoscopic Structure (메조스코픽 구조를 가지는 급냉응고 Al-Nd-(Cu,Ag)합금의 기계적 성질)

  • Koh, Geun-Woo;Kim, Yeong-Hwan;Kim, Han-Goon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.320-326
    • /
    • 1999
  • In rapidly solidified $Al_{92-x}Nd_8$(Cu,Ag)x ($0{\leq}X{\leq}10at%$) alloys, amorphous single phases were obtained in the ranges of $Oat%{\leq}X{\leq}4at%$ for Al-Nd-Cu system and $Oat%{\leq}X{\leq}6at%$ for Al-Nd-Ag system, respectively. Mesoscopic structures consisted of amorphous and crystalline phases were formed above solute ranges. It was founded that the mesoscopic structures were also formed near 1st exothermic peak on DSC curve by aging in amorphous single phase alloys. For example, amorphous $Al_{92-x}Nd_8$(Cu,Ag)x (X=2.4at%) alloys containing nanoscale Al particles and compounds, i.e., mesoscopic structure, exhibited higher tensile fracture strength(${\sigma}_f$) than those of amorphous single phase alloys with the same composition. The ${\sigma}_f$ showed a maximum value in the $V_f$ ranges of 10~15%. The reason is presumed that the nanoscale precipitates which have higher mechanical strength compared with the amorphous phase with the same composition act as an effective resistance to shear deformation of the amorphous matrix.

  • PDF

Characteristics of soybean urease induced CaCO3 precipitation

  • Zhu, Liping;Lang, Chaopeng;Li, Bingyan;Wen, Kejun;Li, Mingdong
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • Bio-CaCO3 is a blowout environment-friendly materials for soil improvement and sealing of rock fissures. To evaluate the chemical characteristics, shape, size and productivity of soybean urease induced CaCO3 precipitates (SUICP), experimental studies were conducted via EDS, XRD, FT-IR, TGA, BET, and SEM. Also, the conversion rate of SUICP reaction at different time were determined and analyzed. The Bio-CaCO3 product obtained by SUICP is comprehensively judged as calcite based on the results of EDS, XRD and FT-IR. The SUICP calcite precipitates are detected as spherical or ellipsoidal particles 3-6 ㎛ in diameter with nanoscale pores on their surface, and this morphology is novel. The median secondary particle size d50 is 39-88 ㎛, indicating the agglomeration of the primary calcite particles. The Bio-calcite decomposes at 650-780℃, representing a medium thermal stability. The conversion rate of SUICP reaction can reach 80% in 24h, which is much more efficient than microbially induced CaCO3 precipitation. These results reveal the knowledges of SUICP, and further direct its engineering applications. Moreover, we show an economic channel to obtain porous spherical calcite.