• Title/Summary/Keyword: nanopowders

Search Result 176, Processing Time 0.024 seconds

Synthesis of Nanocomposite Powder for Tungsten Heavy Alloy by Hydrogen Reduction of Ultrasonic-milled Oxide Nanopowders

  • Lee, Chang-Woo;Lee, Seung-Chul;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.422-423
    • /
    • 2006
  • Ultrasonic-milling of metal oxide nanopowders for the preparation of tungsten heavy alloys was investigated. Milling time was selected as a process variable. XRD results of metal oxide nanopowders ultrasonic-milled for 50 and 100h showed that mean crystallite size reduced with increasing milling time and there was no evidence of contamination or change of composition by impurities. It was found that nanocomposite powders reduced at $800^{\circ}C$ in $H_2$ atmosphere had a composition of 93.1W-4.9Ni-2.0Fe by EDX analysis. Hardness of sintered samples of 50 and 100h was 390 and 463 Hv, respectively, which corresponds to the hardness of commercial products.

  • PDF

Fabrication of Transition-metal-incorporated TiO2 Nanopowder by Flame Synthesis (화염법에 의한 천이금속 첨가 이산화티타늄 나노분말의 제조)

  • Park Hoon;Jie Hyunseock;Lee Seung-Yong;Ahn Jae-Pyoung;Lee Dok-Yol;Park Jong-Ku
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.399-405
    • /
    • 2005
  • Nanopowders of titanium dioxide $(TiO_2)$ incorporating the transition metal element(s) were synthesized by flame synthesis method. Single element among Fe(III), Cr(III), and Zn(II) was doped into the interior of $TiO_2$ crystal; bimetal doping of Fe and Zn was also made. The characteristics of transition-metal-doped $TiO_2$ nanopowders in the particle feature, crystallography and electronic structures were determined with various analytical tools. The chemical bond of Fe-O-Zn was confirmed to exist in the bimetal-doped $TiO_2$ nanopowders incorporating Fe-Zn. The transition element incorporated in the $TiO_2$ was attributed to affect both Ti 3d orbital and O 2p orbital by NEXAFS measurement. The bimetal-doped $TiO_2$ nanopowder showed light absorption over more wide wavelength range than the single-doped $TiO_2$ nanopowders.

Synthesis of Nanocrystalline TiO2 by Sol-Gel Combustion Hybrid Method and Its Application to Dye Solar Cells

  • Han, Chi-Hwan;Lee, Hak-Soo;Han, Sang-Do
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1495-1498
    • /
    • 2008
  • $TiO_2$ nanopowders were synthesized by new sol-gel combustion hybrid method using acetylene black as a fuel. The dried gels exhibited autocatalytic combustion behaviour. $TiO_2$ nanopowders with an anatase structure and a narrow size distribution were obtained at 400-600 ${^{\circ}C}$. Their crystal structures were examined by powder Xray diffraction (XRD) and their morphology and crystal size were investigated by scanning electron microscopy (SEM). The crystal size of the nanopowders was found to be in the range of 15-20 nm. $TiO_2$ powders synthesized at 500 ${^{\circ}C}$ and 600 ${^{\circ}C}$ were applied to a dye solar cell. An efficiency of 5.2% for the conversion of solar energy to electricity ($J_{sc}$ = 11.79 mA/$cm^2$, $V_{oc}$ = 0.73 V, and FF = 0.58) was obtained for an AM 1.5 irradiation (100 mW/$cm^2$) using the $TiO_2$ nanopowder synthesized by the sol-gel combustion hybrid method at 500 ${^{\circ}C}$.

Synthesis of High Purity Aluminum Nitride Nanopowder in Ammonia and Nitrogen Atmosphere by RF Induction Thermal Plasma (RF 유도결합 열 플라즈마를 이용한 암모니아와 질소분위기에서 고순도 AlN 나노 분말의 합성)

  • Kim, Kyung-In;Choi, Sung-Churl;Kim, Jin-Ho;Hwang, Kwang-Taek;Han, Kyu-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.201-207
    • /
    • 2014
  • High-purity aluminum nitride nanopowders were synthesized using an RF induction thermal plasma instrument. Ammonia and nitrogen gases were used as sheath gas to control the reactor atmosphere. Synthesized AlN nanopowders were characterized by XRD, SEM, TEM, EDS, BET, FTIR, and N-O analyses. It was possible to synthesize high-purity AlN nanoparticles through control of the ammonia gas flow rate. However, additional process parameters such as plasma power and reactor pressure had to be controlled for the production of high-purity AlN nanopowders using nitrogen gas.

Evaluation of the Reactivity of Bulk Nano Ni/Al Powder Manufactured by Shock Compaction Process (충격압분공정으로 제조된 나노 니켈/알루미늄 혼합분말재의 특성 평가)

  • Kim, W.;Ahn, D.H.;Park, L.J.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.216-221
    • /
    • 2017
  • Recently, interest in multifunctional energetic structural materials (MESMs) has grown due to their multifunctional potential, especially in military applications. However, there are few studies about extrinsic factors that govern the reactivity of MESMs. In this paper, a shock compaction process was performed on the nano Ni/Al-mixed powder to investigate the effect of particle size on the shock reaction condition. Additionally, heating the statically compacted specimen was also performed to compare the mechanical properties and microstructure between reacted and unreacted material. The results show that the agglomerated structure of nanopowders interrupts the reaction by reducing the elemental boundary. X-ray diffraction analysis shows that the NiAl and $Ni_3Al$ intermetallics are formed on the reacted specimen. The microhardness results show that the $Ni_3Al$ phase has a higher hardness than NiAl, but the portion of $Ni_3Al$ in the reacted specimen is minor. In conclusion, using Ni/Al composites as a reactive material should focus on energetic use.

Synthesis and Characterization of ZnAl2O4 Nanopowders by a Reverse Micelle Processing

  • Hoon, Son-Jung;Sohn, Jeongho;Shin, Hyung-Sup;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.598-601
    • /
    • 2015
  • Using reverse micelle processing, $ZnAl_2O_4$ nanopowders were synthesized from a mixed precursor(consisting of $Zn(NO_3)_2$ and $Al(NO_3)_3$). The $ZnAl_2O_4$ was prepared by mixing the aqueous solution at a molar ratio of Zn : Al = 1 : 2. The average size and distribution of the synthesized powders with heat treatment at $600^{\circ}C$ for 2 h were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized powders increased with increasing water to surfactant molar ratio. The XRD diffraction patterns show that the phase of $ZnAl_2O_4$ was spinel(JCPDS No. 05-0669). The synthesized and calcined powders were characterized using a thermogravimetric - differential scanning calorimeter(TG-DSC), X-ray diffraction analysis (XRD), and high resolution transmission electron microscopy(HRTEM). The effects of the synthesis parameter, such as the molar ratio of water to surfactant, are discussed.

Fabrication of Core-Shell Structured Ni-Based Alloy Nanopowder by Electrical Wire Explosion Method

  • Lee, A-Young;Lee, Gwang-Yeob;Oh, Hye-Ryeong;Kim, Hyeon-Ah;Kim, Song-Yi;Lee, Min-Ha
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.409-413
    • /
    • 2016
  • Electrical wire explosion in liquid media is a promising method for producing metallic nanopowders. It is possible to obtain high-purity metallic nanoparticles and uniform-sized nanopowder with excellent dispersion stability using this electrical wire explosion method. In this study, Ni-Fe alloy nanopowders with core-shell structures are fabricated via the electrical explosion of Ni-Fe alloy wires 0.1 mm in diameter and 20 mm in length in de-ionized water. The size and shape of the powders are investigated by field-emission scanning electron microscopy, transmission electron microscopy, and laser particle size analysis. Phase analysis and grain size determination are conducted by X-ray diffraction. The result indicate that a core-shell structured Ni-Fe nanopowder is synthesized with an average particle size of approximately 28 nm, and nanosized Ni core particles are encapsulated by an Fe nanolayer.

Change of Particle Morphology and Ingredient Phase of WC and WC-Co Nanopowders Fabricated by Chemical Vapor Condensation during Subsequent Heat-Treatment (기상응축법으로 제조한 나노 WC및 WC-Co분말의 후속 열처리에 의한 상 및 협상 변화)

  • 김진천;하국현;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.124-129
    • /
    • 2004
  • Nanosized WC and WC-Co powders were synthesised by chemical vapor condensation(CVC) process using the pyrolysis of tungsten hexacarbonyl(W(CO)$_6$) and cobalt octacarbonyl(Co$_2$(CO)$_8$). The microstructural changes and phase evolution of the CVC powders during post heat-treatment were studied using the XRD, FE-SEM, TEM, and ICP-MS. CVC powders were consisted of the loosely agglomerated sub-stoichimetric WC$_{1-x}$ and the long-chain Co nanopowders. The sub-stochiometric CVC WC and WC-Co powders were carburized using the mixture gas of CH$_4$-H$_2$ in the temperature range of 730-85$0^{\circ}C$. Carbon content of CVC powder controlled by the gas phase carburization at 85$0^{\circ}C$ was well matched with the theoretical carbon sioichiometry of WC, 6.13 wt%. During the gas phase carburization, the particle size of WC increased from 20 nm to 40 nm and the long chain structure of Co powders disappeared.

Preparation of Highly Stabilized Silver Nanopowders by the Thermal Reduction and Their Properties

  • Kim, Kyoung-Young;Gong, Myoung-Seon;Park, Chan-Kyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.3987-3992
    • /
    • 2012
  • Silver nanopowders were prepared from silver 2-ethylhexylcarbamate (Ag-EHCB) complexes by simple thermal reduction at $85^{\circ}C$ without any reducing agent in organic solvent. 2-Ethylhexylammonium 2-ethylhexylcarbamate (EHAEHC) was investigated in terms of their abilities to stabilize the silver nanoparticles (Ag-NPs) and its subsequent effects on the preventing aggregation between Ag-NPs. Conditions (concentration of stabilizer and reaction time) used to reduce Ag-EHCB complex were systematically varied to determine their effects on the sizes of Ag-NPs. The formation of the stabilized Ag-NPs were easily monitored by UV-vis spectroscopy and characterized by TGA, TEM, SEM and XRD. When EHAEHC was used as a stabilizer, Ag-NPs of 10-30 nm in diameter were easily obtained in high yield. Silver patterns were obtained from a silver nano-paste by heat treatment at $200^{\circ}C$ in air and were found to have resistivity values of $2.9{\times}10^{-8}\;{\Omega}{\cdot}m$.