• Title/Summary/Keyword: nanoporous material

Search Result 59, Processing Time 0.021 seconds

Adsorption and Storage of Natural Gas by Nanoporous Adsorbents (나노세공체 흡착제에 의한 천연가스의 흡착 및 저장)

  • Jhung, Sung Hwa;Chang, Jong-San
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.117-125
    • /
    • 2009
  • In order to utilize natural gas (NG), one of the clean energy sources in next-generation, as a fuel for vehicles, it is important to store natural gas with high density. To store NG by adsorption (ANG) at room temperature and at relatively low pressure(35~40 atm) is safe and economical compared with compressed NG and liquefied NG. However, so far no adsorbent is reported to have adsorption capacity suitable for commercial applications. Nanoporous materials including metal-organic frameworks can be potential adsorbents for ANG. In this review, physicochemical properties of adsorbents necessary for high adsorption capacity are summarized. Wide surface area, large micropore volume, suitable pore size and high density are necessary for high energy density. Moreover, low adsorption-desorption energy, rapid adsorption-desorption kinetics and high delivery are needed. Recently, various efforts have been reported to utilize nanoporous materials in ANG, and it is expected to develop a nanoporous material suitable for ANG.

Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory

  • Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.683-693
    • /
    • 2017
  • According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index, nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.

Electric Field Effect on Nanochannel Formation in Electrochemical Porous Structures of Alumina

  • Kim, Keun-Joo;Choi, Jae-Ho;Lee, Jung-Tack
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.230-233
    • /
    • 2010
  • The authors investigated the anodization mechanism of aluminum in an oxalic acid solution, and the electrochemical reaction is very unique for pore formation via the dissolution process, which is very dependent on the surface geometry in nanoporous alumina templates. The cross-sectional nanochannels showed that the geometrical curvature of the initial surface can cause the branching of nanochannels to be adjusted in volume occupancy to be direct to the electric field normal to the surface. The nanoporous alumina with the crystalline $\gamma-Al_2O_3$ phase showed hexagonal ordering at a voltage of 40 V, with a nanohole distance of 102 nm from the charge density oscillation of the oxalic acid solution.

Spatio-temporal Charge Distribution in Electric Double Layer Capacitors observed by pulsed Electro Acoustic Method

  • Sung, Youl-Moon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.182-187
    • /
    • 2007
  • The use of the pulsed electro acoustic (PEA) method allowed us to perform the direct observations of spatio-temporal charge distributions in Electric double layer capacitors (EDLCs) based on polarizable nanoporous carbonaceous electrode. The negative charge density became the maximum, about $205C/m^3$ at the region where was near to collector layer in EDLCs for case $V_{DC}=2.5V$, while the positively charged density became the maximum, about $61.1C/m^3$ at the region where it was located around the cathode layer. The performance of the best sample was found to be better in terms of the charge density (Cs) and specific energy ($E_s$) with a maximum value of ${\sim}8.4F/g$ and 26 Wh/kg. The $C_s$ obtained from the PEA method agreed well with that from the energy conversion method. The PEA measurement used here is a very useful method to quantitively investigates the spatio-temporal charge distribution in EDLCs.

Enhancement of Conversion Efficiency of Dye-Sensitized Solar Cells(DSSCs) by Nb2O5 Coating on TiO2 Electrode (Nb2O5 코팅에 따른 염료감응 태양전지의 효율 향상)

  • Park, Seonyeong;Jung, Sukwon;Kim, Jung Hyeun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.506-510
    • /
    • 2010
  • Electron recombinations in electrolyte solution reduce light-to-energy conversion efficiency at the nanoporous electrode surface of dye sensitized solar cells. In this study, we improved the conversion efficiency using an energy barrier at the nanoporous electrode surface to control the recombination process. The energy barrier was formed by coating nanoporous $TiO_2$ electrode with $Nb_2O_5$ material. We investigated the influence of energy barrier on the cell efficiency depending on the coating thickness. Nanoporous $TiO_2$ electrode was coated about 5 nm thickness by 12 times coatings, and so the coating layer was grown about 0.417 nm for every time. Enhancement of conversion efficiency from 2.55% to 4.25% was achieved at 0.834 nm coating thickness, and it was believed as the optimum thickness for minimizing the electron recombination process in our experimental system.

Fabrication of Nanowellstructured and Nanonetstructured Metal Films using Anodic Porous Alumina Film (다공성 알루미나 박막을 이용한 금속 나노우물과 나노그물 구조의 박막 제작)

  • Noh, Ji-Seok;Chin, Won-Bai
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.518-526
    • /
    • 2006
  • Nanoporous alumina film was fabricated by anodization of an aluminum sheet. Highly ordered nanowellstructured and nanonets-tructured metal films were fabricated by vacuum evaporation of several metals(Al, Sn, and Co) using the anodic nanoporous alumina film as a template. In this experiment, an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used. The resistance heating method was adopted for evaporating a desired metal, and vapor deposition was carried out under the base pressure of torr. It was founded that whether the structure fabricated by vacuum evaporation is nanowell or nanonet is dependent on the amount of deposited material. When an anodic porous alumina film with the cell size of 100 nm and the pore diameter of 60 nm was used, a nanowell-structured film was fabricated when a sufficient amount of metal was suppled to cover the surface pores. On the other hand, nanonet-structured film was fabricated bellow a half the amount of metal required for nanowell-structured film.

Hierarchically nanoporous carbons derived from empty fruit bunches for high performance supercapacitors

  • Choi, Min Sung;Park, Sulki;Lee, Hyunjoo;Park, Ho Seok
    • Carbon letters
    • /
    • v.25
    • /
    • pp.103-112
    • /
    • 2018
  • Hierarchically porous, chemically activated carbon materials are readily derived from biomass using hydrothermal carbonization (HTC) and chemical activation processes. In this study, empty fruit bunches (EFB) were chosen as the carbon source due to their sustainability, high lignin-content, abundance, and low cost. The lignin content in the EFB was condensed and carbonized into a bulk non-porous solid via the HTC process, and then transformed into a hierarchical porous structure consisting of macro- and micropores by chemical activation. As confirmed by various characterization results, the optimum activation temperature for supercapacitor applications was determined to be $700^{\circ}C$. The enhanced capacitive performance is attributed to the textural property of the extremely high specific surface area of $2861.4m^2\;g^{-1}$. The prepared material exhibited hierarchical porosity and surface features with oxygen functionalities, such as carboxyl and hydroxyl groups, suitable for pseudocapacitance. Finally, the as-optimized nanoporous carbons exhibited remarkable capacitive performance, with a specific capacitance of $402.3F\;g^{-1}$ at $0.5A\;g^{-1}$, a good rate capability of 79.8% at current densities from $0.5A\;g^{-1}$ to $10A\;g^{-1}$, and excellent life cycle behavior of 10,000 cycles with 96.5% capacitance retention at $20A\;g^{-1}$.

Photoelectrochemical performance of anodized nanoporous iron oxide based on annealing conditions (양극산화로 제조된 다공성 나노구조 철 산화막의 열처리 조건에 따른 광전기화학적 성질)

  • Dongheon Jeong;JeongEun Yoo;Kiyoung Lee
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.4
    • /
    • pp.265-272
    • /
    • 2023
  • Photoelectrochemical (PEC) water splitting is one of the promising methods for hydrogen production by solar energy. Iron oxide has been effectively investigated as a photoelectrode material for PEC water splitting due to its intrinsic property such as short minority carrier diffusion length. However, iron oxide has a low PEC efficiency owing to a high recombination rate between photoexcited electrons and holes. In this study, we synthesized nanoporous structured iron oxide by anodization to overcome the drawbacks and to increase surface area. The anodized iron oxide was annealed in Ar atmosphere with different purging times. In conclusion, the highest current density of 0.032 mA/cm2 at 1.23 V vs. RHE was obtained with 60 s of pursing for iron oxide(Fe-60), which was 3 times higher in photocurrent density compared to iron oxide annealed with 600 s of pursing(Fe-600). The resistances and donor densities were also evaluated for all the anodized iron oxide by electrochemical impedance spectra and Mott-Schottky plot analysis.