• Title/Summary/Keyword: nanoparticles

Search Result 3,612, Processing Time 0.024 seconds

A New Approach to Synthesis and Photoluminescence of Silicon Nanoparticles

  • Kim, Beomsuk
    • Journal of the Chosun Natural Science
    • /
    • v.2 no.1
    • /
    • pp.28-31
    • /
    • 2009
  • We describe the synthesis and characterization of silicon nanoparticles prepared by the soluton reduction of SiCl4. These reactions produce Si nanoparticles with surfaces that are covalently terminated. The resultant organic derivatized Si nanoparticles as well as a probable distribution of Water-soluble Si nanoparticles are observed and characterized by photoluminescence(PL) spectroscopy. This work focuses originally on the organic- and water-soluble silicon nanoparticles in terms of the photoluminescence. Further this work displays probably the first layout of hydrogen terminated Si nanoparticles synthesized in solution at room temperature.

  • PDF

Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles

  • Park, Eun-Jung;Park, Kwang-Sik
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.195-201
    • /
    • 2009
  • Recent publications showed that metal nanoparticles which are made from $TiO_2,\;CeO_2,\;Al_2O_3,\;CuCl_2,\;AgNO_3$ and $ZnO_2$ induced oxidative stress and pro-inflammatory effects in cultured cells and the responses seemed to be common toxic pathway of metal nanoparticles to the ultimate toxicity in animals as well as cellular level. In this study, we compared the gene expression induced by two different types of metal oxide nanoparticles, titanium dioxide nanoparticles (TNP) and cerium dioxide nanoparticles (CNP) using microarray analysis. About 50 genes including interleukin 6, interleukin 1, platelet-derived growth factor $\beta$, and leukemia inhibitory factor were induced in cultured BEAS2B cells treated with TNP 40 ppm. When we compared the induction levels of genes in TNP-treated cells to those in CNP-treated cells, the induction levels were very correlated in various gene categories (r=0.645). This may suggest a possible common toxic mechanism of metal oxide nanoparticles.

Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles

  • Dutta, Gorachand;Yang, Haesik
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Although the time dependences of the electrocatalytic activities of Pt and Pd nanoparticles during electrochemical operations have been widely studied, the time dependences under nonpolarized conditions have never been investigated in depth. This study reports the changes in the electrocatalytic activities of Pt and Pd nanoparticles with aging in air and in solution. Pt (or Pd) nanoparticle-modified electrodes are obtained by adsorbing citrate-stabilized Pt (or Pd) nanoparticles on amine-modified indium-tin oxide (ITO) electrodes, or by electrodeposition of Pt (or Pd) nanoparticles on ITO electrodes. The electrocatalytic activities of freshly prepared Pt and Pd nanoparticles in the oxygen reduction reaction slowly decrease with aging. The electrocatalytic activities decrease more slowly in solution than in air. An increase in surface contamination may cause electrocatalytic deactivation during aging. The electrocatalytic activities of long-aged Pt (or Pd) nanoparticles are significantly enhanced and recovered by NaBH4 treatment.

A New Paradigm Shift for the Green Synthesis of Antibacterial Silver Nanoparticles Utilizing Plant Extracts

  • Park, Youmie
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.169-178
    • /
    • 2014
  • This review covers general information regarding the green synthesis of antibacterial silver nanoparticles. Owing to their antibacterial properties, silver nanoparticles are widely used in many areas, especially biomedical applications. In green synthesis practices, the chemical reducing agents are eliminated, and biological entities are utilized to convert silver ions to silver nanoparticles. Among the various biological entities, natural plant extracts have emerged as green reducing agents, providing eco-friendly routes for the preparation of silver nanomaterials. The most obvious merits of green synthesis are the increased biocompatibility of the resulting silver nanoparticles and the ease with which the reaction can be carried out. This review summarizes some of the plant extracts that are used to produce antibacterial silver nanoparticles. Additionally, background information regarding the green synthesis and antibacterial activity of silver nanoparticles is provided. Finally, the toxicological aspects of silver nanoparticles are briefly mentioned.

Double Convective Assembly Coatings of FePt Nanoparticles to Prevent Particle Coalescence during Annealing

  • Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.3
    • /
    • pp.156-160
    • /
    • 2011
  • FePt nanoparticles suspension was synthesized by reduction of platinum acetylacetonate and decomposition of iron pentacarbonyl in the presence of oleic acid and oleyl amine. FePt nanoparticles were coated on a substrate by convective assembly from the suspension. To prevent the coalescence during the annealing of FePt nanoparticles double convective coatings were tried. First convective coating was for silica particle assembly on a silicon substrate and second one was for FePt nanoparticles on the previously coated silica layers. It was observed by scanning electron microscopy (SEM) that FePt nanoparticles were dispersed on the silica particle surface. After annealing at $700^{\circ}C$ for 30 minutes under nitrogen atmosphere, FePt nanoparticles on silica particles were maintained in a dispersed state with slight increase of particle size. On the contrary, FePt nanoparticles that were directly coated on silicon substrate showed severe particle growth after annealing due to the close-packing of nanoparticles during assembly. The size variation during annealing was also verified by X-ray diffractometer (XRD). It was suggested that pre-coating, which offered solvent flux oppose to the capillary force between FePt nanoparticles, was an effective method to prevent coalescence of nano-sized particles under high temperature annealing.

Deformability of Phospholipid Nanoparticles Containing Surfactants (계면활성제 함유 인지질 나노입자의 초가변성 연구)

  • Shin, Jee-Young;Oh, Yu-Kyoung;Kang, Min-Jeong;Kwon, Kyoung-Ae;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • This study was aimed to formulate various phospholipid nanoparticles composed of different surfactants and to evaluate the deformability of the phospholipid vesicles as candidates of useful ultradeformable nanoparticles. In vitro deformability of the phospholipid nanoparticles was studied using an extruder under a certain pressure. The sizes of phospholipid nanoparticles, passed volumes, and concentrations of the phospholipids in suspensions before and after extrusion were measured. The deformability indexes were estimated by using passed volumes, sizes of phospholipid nanoparticles and concentrations of phospholipids. Conventional liposomes, placed under a certain pressure of an extruder, showed no passed volume indicating little deformability. Similar to conventional liposomes, phospholipid nanoparticles containing surfactants such as sodium taurocholate, Myrj 45, or Myrj 53 showed little deformability. In contrast, phospholipid nanoparticles composed of Tween 20, Triton X-100, or sodium deoxycholate showed higher deformability indexes than others. Taken together, the deformability of phospholpid nanoparticles could be significantly affected by the type of surfactants. Moreover, these results suggest that the deformability of phospholipid nanoparticles could be modulated by surfactants.

Preparation and Reconstitution of Core-shell Type Nanoparticles of Poly(ε -caprolactone)/Poly(ethyleneglycol)/Poly(ε -caprolactone) Triblock Copolymers

  • Jeong, Young-Il;Ryu, Jae-Gon;Kim, Young-Hoon;Kim, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.872-879
    • /
    • 2002
  • One of the improtant characteristics of core-shell type nanoparticles is the long-term storage and reuse as an aqueous injection solution when required. For this reason, reconstruction of lyophilized core-shell type nanoparticles is considered to be essential . BAB type triblock copolymers differ from AB type diblock copolymers, which contain the A block as a hydrophilic part and the B block as a hydrophobic part. by not being easily redistributed into phosphate-buffered saline (PBS, pH 7.4, 0.1 M). Therefore, lyophilized core-shell type nanoparticles of CEC triblock copolymer were reconstituted using a somication process with a bar-type sonicator in combination with a freezing-thawing process. Soncation for 30s only resuspended CEC nanoparticles in PBS; their particle size distribution showed a monomodal pattern with narrow size distribution. The bimodal size distribution pattern and the aggregates were reduced by further sonication for 120 s but these nanoparticles showed a wide size distribution. The initial burst of drug release was increased by reconstitution process. The reconstitution of CEC core-shell type nanoparticles by freezing-thawing resulted in trimodal distribution pattern and formed aggregates, although freezing-thawing process was easier than sonication . Drug release form CEC nanoparticles prepared by freezing-thawing was slower than from the original dialysis solution. Although core-shell typenanoparticles of CEC triblock copolymers were not easily performed. Cytotoxicity testing of core-shell type nanoparticles of CEC-2 triblock copolymers containing clonazepam (CNZ) was performed using L929 cells. Cytotoxicity of CNZ was decreased by incorporation into nanoparticles.

Protein-Coating Evaluation Method of Colloidal Gold Nanoparticles (콜로이드 골드 나노입자의 단백질 수송성 평가법)

  • Kim, Mi-Young;Noh, Sang-Myoung;Kim, Jung-Mogg;Choi, Han-Gon;Kim, Jung-Ae;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.6
    • /
    • pp.465-469
    • /
    • 2004
  • Colloidal gold nanoparticles might be of use as nano scale delivery systems of various therapeutic materials in the future. Recent studies have reported the feasibility of colloidal gold nanoparticles as gene delivery systems or protein delivery systems. In this study, we aimed to develop a short-step method useful for screening the optimal coating conditions of colloidal gold nanoparticles with proteins. We observed that colloidal gold nanoparticles have properties of changing its unique color when they were exposed to NaCl solution. Taking advantage of the color changing properties of colloidal gold nanoparticles, we applied the color testing method of colloidal gold nanoparticles solutions for evaluating the protein coating nature. Using bovine serum albumin as a model protein, we tested the protein coating of colloidal gold nanoparticles via the color change upon NaCl addition. The optimal coating concentration and coating conditions of colloidal gold nanoparticles with bovine serum albumin were fixed using the color testing methods. We suggest that the color testing method might be applied to optimize the coating condition of colloidal gold nanoparticles with other therapeutic proteins.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

In Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles Against H7N3 Influenza A Virus

  • Fatima, Munazza;Sadaf Zaidi, Najam-us-Sahar;Amraiz, Deeba;Afzal, Farhan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.151-159
    • /
    • 2016
  • Nanoparticles have wide-scale applications in various areas, including medicine, chemistry, electronics, and energy generation. Several physical, biological, and chemical methods have been used for synthesis of silver nanoparticles. Green synthesis of silver nanoparticles using plants provide advantages over other methods as it is easy, efficient, and eco-friendly. Nanoparticles have been extensively studied as potential antimicrobials to target pathogenic and multidrug-resistant microorganisms. Their applications recently extended to development of antivirals to inhibit viral infections. In this study, we synthesized silver nanoparticles using Cinnamomum cassia (Cinnamon) and evaluated their activity against highly pathogenic avian influenza virus subtype H7N3. The synthesized nanoparticles were characterized using UVVis absorption spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Cinnamon bark extract and its nanoparticles were tested against H7N3 influenza A virus in Vero cells and the viability of cells was determined by tetrazolium dye (MTT) assay. The silver nanoparticles derived from Cinnamon extract enhanced the antiviral activity and were found to be effective in both treatments, when incubated with the virus prior to infection and introduced to cells after infection. In order to establish the safety profile, Cinnamon and its corresponding nanoparticles were tested for their cytotoxic effects in Vero cells. The tested concentrations of extract and nanoparticles (up to 500 μg/ml) were found non-toxic to Vero cells. The biosynthesized nanoparticles may, hence, be a promising approach to provide treatment against influenza virus infections.