• Title/Summary/Keyword: nanoparticle graft copolymer

Search Result 6, Processing Time 0.016 seconds

Templated Formation of Silver Nanoparticles Using Amphiphilic Poly(epichlorohydrine-g-styrene) Film

  • Park, Jung-Tae;Koh, Joo-Hwan;Seo, Jin-Ah;Roh, Dong-Kyu;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.301-306
    • /
    • 2009
  • This work has demonstrated that a novel amphiphilic poly(epichlorohydrine)-graft-polystyrene (PECH-g-PS) copolymer at 34:66 wt% was synthesized via atom transfer radical polymerization (ATRP) of styrene using PECH as a macroinitiator. The structure of the graft copolymer was characterized by nuclear magnetic resonance ($^1H$ NMR) and FTIR spectroscopy, demonstrating that the "grafting from" method using ATRP was successful. The self-assembled graft copolymer was used as a template film for the in-situ growth of silver nanoparticles from $AgCF_3SO_3$ precursor under UV irradiation. The in situ formation of silver nanoparticles with 6-8 nm in average size in the solid state template film was confirmed by transmission electron microscopy (TEM), UV-visible spectroscopy and wide angle X-ray scattering (WAXS). Differential scanning calorimetry (DSC) also displayed the selective incorporation and the in situ formation of silver nanoparticles within the hydrophilic PECH domains, probably due to stronger interaction of the silvers with the ether oxygens of PECH backbone than that with hydrophobic PS side chains.

DNA-Functionalized Polymers and Nanoparticles for Gene Sensing

  • Maeda, Mizuo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.33-34
    • /
    • 2006
  • The graft copolymer consisting of poly(N-isopropylacrylamide) (PNIPAAm) and single-stranded DNA was prepared. Interestingly, the copolymer was found to form nanoparticles above physiological temperature. We found that non-crosslinking aggregation of the nanoparticles was induced by the hybridization of the surface-bound DNA with the full-match complementary DNA, but not with one-base mismatch. The core material is not restricted to PNIPAAm; DNA-functionalized gold nanoparticle was found to show a similar aggregation induced only by the fully-complementary DNA, resulting in rapid color change within 3 min at ambient temperature. This methodology is general in principle and applicable for wide variety of clinical gene diagnosis.

  • PDF

Self-Aggregated Nanoparticles of Lipoic Acid Conjugated Hyaluronic Acid (히알루론산에 결합된 리포산 자기조립체의 제조 및 특성)

  • Hong, In-Rim;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.561-565
    • /
    • 2008
  • Hyaluronic acid (HA) is a natural glycosaminoglycan and is used widely in the pharmaceutical field. Lipoic acid (LA) helps the regeneration of exogenous and endogenous antioxidants such as Vitamin C and Vitamin E as well as glutathione. It also acts as antioxidant indirectly. Hydrophilic HA as a biodegradable and biocompatible polymer was conjugated with hydrophobic LA as an antioxidant to form the graft copolymer. The carboxyl group of HA was modified by adipic acid dihydrazide (ADH). The synthesis of HA-g-LA graft copolymers was characterized by FT-IR, $^1H$-NMR spectroscopy. The conjugates could form the self-assembled nanoparticles in aqueous solution. The particle size and critical aggregation concentration were verified to use the nanoparticle as a carrier fur the hydrophobic material.

Evaluation of the Stability of Biodegradable Nanoparticle with Time via Particle Size Measurement (입자 크기 측정을 통한 생분해성 나노입자의 시간에 따른 분산 안정성 평가)

  • Cho, Kuk-Young;Yim, Jin-Heong;Park, Jung-Ki;Lee, Ki-Seok
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.246-250
    • /
    • 2008
  • Colloidal stability of the biodegradable nanoparticle was characterized by measuring the variation of particle size with time using photon correlation spectroscopy. Three kinds of polymers, namely, poly(D,L-lactide-co-glycolide)(PLGA), PLGA/poly(L-lactide) blends, and PLGA/poly(L-lactide)-g-poly(ethylene glycol) blends were used as matrix material for nanoparticle preparation. Nanoparticles were prepared with or without using poly(vinyl alcohol)(PVA) as suspension stabilizer to evaluate the condition of preparation. Nanoparticles from the blend of amphiphilic graft copolymer with short poly(ethylene glycol) chain and PLGA maintained suspension for 1 day when protein stock solution was introduced. This is somewhat improvement in colloidal stability against protein adsorption compared with that of nanoparticles without PEG moiety. Suspension stabilizer, PVA, had a significant effect on the colloidal stability against freezing and protein adsorption which led to coagulation of nanoparticles. It is important to consider effect of suspension stabilizer as well as materials used to prepare nanoparticle on the colloidal stability.

Synthesis and Characterization of Poly(ethylene glycol) Grafted Polysuccinimide (폴리(에틸렌 글리콜)이 결합된 Polysuccinimide의 합성과 특성)

  • Lim, Nak-Hyun;Lee, Ha-Young;Kim, Moon-Suk;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.36-40
    • /
    • 2005
  • Poly(amino acid) derivatives have been widely investigated as a drug carrier in drug delivery system. Particularly,polysuccinimide (PSI) is one of the most promising drug carriers since it possesses suitable physicochemical characteristics for development of macromolecular prodrugs, due to biocompatibility and biodegradability. In this study, we deal with the synthesis of polyaspartamide having various functional groups such as methoxy-poly(ethylene glycol) (MPEG) via ring closing of PSI. PSI was synthesized by polyonensation polymerization of spartic acid. The variety of average molecular weight was confirmed with reacion time and catalyst content to observe the optimum condition of synthesis. MPEG, hydrophilic chain, was bonded to fabricate polymeric micell composed of hydrophilic and hydrophobic polymer. All materials were characterized by 1H-NMR, FT-IR and GPC. In addition, the formation of nanoparticle micelle as drug carrier were also examined. Micelle size was measured by ELS and AFM. The functionalized polysparamide formed nanoparticle micelle whose size ranged from 90 to 130 nm. In conclusion, we prepared polyaspartamide functionalized with PEG examined the possibility as drug carriers.

Effect of Mesoporous TiO2 in Facilitated Olefin Transport Membranes Containing Ag Nanoparticles (나노입자가 포함된 촉진수송 분리막에서의 메조기공 티타늄산화물의 영향)

  • Kim, Sang Jin;Jung, Jung Pyu;Kim, Dong Jun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.398-405
    • /
    • 2015
  • Facilitated transport is considered to be a possible solution to simultaneously improve permeability and selectivity, which is challenging in normal polymeric membranes based on solution-diffusion transport only. We investigated the effect of adding mesoporous $TiO_2$ ($m-TiO_2$) upon the separation performance of facilitated olefin transport membranes comprising poly(vinyl pyrrolidone), Ag nanoparticles, and 7,7,8,8-tetracyanoquinodimethane as the polymer matrix, olefin carrier, and electron acceptor, respectively. In particular, $m-TiO_2$ was prepared by means of a facile, mass-producible method using poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymer as the template. The crystal phase of $m-TiO_2$ consisted of an anatase/rutile mixture, of crystallite size approximately 16 nm as determined by X-ray diffraction. The introduction of $m-TiO_2$ increased the membrane diffusivity, thereby increasing the mixed-gas permeance from 1.6 to 16.0 GPU ($1GPU=10^{-6}cm^3$(STP)/($s{\times}cm^2{\times}cmHg$), and slightly decreased the propylene/propane selectivity from 45 to 37. However, both the mixed-gas permeance and selectivity of the membrane containing $m-TiO_2$ rapidly decreased over time, whereas the membrane without $m-TiO_2$ had more stable long-term performance. This difference might be attributed to specific chemical interactions between $TiO_2$ and Ag nanoparticles, causing Ag to lose activity as an olefin carrier.