• 제목/요약/키워드: nanometer-size

검색결과 168건 처리시간 0.029초

전기가열 튜브로를 이용한 나노/서브마이크론 입자의 발생 (Generation of Nano/Submicron Particles Using an Electrically Heated Tube Furnace)

  • 지준호;배양일;황정호;배귀남
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1734-1743
    • /
    • 2003
  • Aerosol generator using an electrically heated tube furnace is a stable apparatus to supply nanometer sized aerosols by using the evaporation and condensation processes. Using this method, we can generate highly concentrated polydisperse aerosols with relatively narrow size distribution. In this work, characteristics of particle size distribution, generated from a tube furnace, were experimentally investigated. We evaluated effects of several operation parameters on particle generation: temperature in the tube furnace, air flow rates through the tube, size of boat containing solid sodium chloride(NaCl). As the temperature increased, the geometric mean diameter increased and the total number concentration also increased. Dilution with air affected the size distribution of the particles due to coagulation. A smaller sized boat, which has small surface area to contact with air, brings smaller particles of narrow size distribution in comparison of that of a larger boat. Finally, we changed the electrical mobility diameter of aggregate sodium chloride particles by varying relative humidity of dilution air, and obtained non-aggregate sodium chloride particles, which are easy to generate exact monodisperse particles.

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

수열합성법으로 제조된 Zn-$TiO_2$ 나노입자와 $TiO_2$ 나노입자가 zebrafish 배발생에 미치는 영향 (The Effect of Nano-scale Zn-$TiO_2$ and Pure $TiO_2$ Particles were Prepared using a Hydrothermal Method on Zebrafish Embryogenesis)

  • 여민경;김효은
    • Environmental Analysis Health and Toxicology
    • /
    • 제24권4호
    • /
    • pp.333-339
    • /
    • 2009
  • In this study, we investigated the biological toxicity of nano-scale Zn (0.1, 0.5, and 1 mol%)-doped $TiO_2$ and pure $TiO_2$ nanoparticles using zebrafish embryogenesis as our model organism. Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method for the insertion of zinc into the $TiO_2$ framework. The characters of Zn-doped $TiO_2$ (0.1%, 0.5%, 1%Zn) and pure $TiO_2$ were about 7~8 nm. These sizes were smaller than 100~200 nm of $TiO_2$ was prepared using the sol-gel method. Particularly, in this study, we found no significant biological toxicity in the hatching rate and abnormal rate under expose pure $TiO_2$ and Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method of zebrafish. It was different from the biological damage under $TiO_2$ nanoparticles were prepared using sol-gel method. We assessed that the damage was not linked to the particle's nanometer size, but rather due to the prepare method. Moreover, $TiO_2$ nanoparticles were prepared using a hydrothermal method were not shown to cause cytotoxic effects, like apoptosis and necrosis, that are the major markers of toxicity in organisms exposed to nanomaterials. Therefore, there is some relationship with biological toxicity of nanoparticles and the prepare method of nanometer size particles.

실험 계획법을 이용한 점착방지막용 플라즈마 증착 공정변수의 최적화 연구 (Optimizing the Plasma Deposition Process Parameters of Antistiction Layers Using a DOE (Design of Experiment))

  • 차남구;박창화;조민수;박진구;정준호;이응숙
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.705-710
    • /
    • 2005
  • NIL (nanoimprint lithography) technique has demonstrated a high potential for wafer size definition of nanometer as well as micrometer size patterns. During the replication process by NIL, the stiction between the stamp and the polymer is one of major problems. This stiction problem is moi·e important in small sized patterns. An antistiction layer prevents this stiction ana insures a clean demolding process. In this paper, we were using a TCP (transfer coupled plasma) equipment and $C_4F_8$ as a precursor to make a Teflon-like antistiction layer. This antistiction layer was deposited on a 6 inch silicon wafer to have nanometer scale thicknesses. The thickness of deposited antistiction layer was measured by ellipsometry. To optimize the process factor such as table height (TH), substrate temperature (ST), working pressure (WP) and plasma power (PP), we were using a design of experimental (DOE) method. The table of full factorial arrays was set by the 4 factors and 2 levels. Using this table, experiments were organized to achieve 2 responses such as deposition rate and non-uniformity. It was investigated that the main effects and interaction effects between parameters. Deposition rate was in proportion to table height, working pressure and plasma power. Non-uniformity was in proportion to substrate temperature and working pressure. Using a response optimization, we were able to get the optimized deposition condition at desired deposition rate and an experimental deposition rate showed similar results.

자성 메모리의 적용을 위한 나노미터 크기로 패턴된 Magnetic Tunnel Junction의 식각 특성 (Etch Characteristics of Magnetic Tunnel Junction Stack Patterned with Nanometer Size for Magnetic Random Access Memory)

  • 박익현;이장우;정지원
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.853-856
    • /
    • 2005
  • 자성 메모리반도체의 핵심 소자인 magnetic tunnel junction (MTJ) stack에 대한 고밀도 유도결합 플라즈마 반응성 식각이 연구되었다. MTJ stack은 electron(e)-beam lithography 공정을 사용하여 나노미터 크기의 패턴 형성이 되었으며 식각을 위한 하드 마스크(hard mask)로서 TiN 박막이 이용되었다. TiN 박막은 Ar, $Cl_2/Ar$, 그리고 $SF_6/Ar$들의 가스를 사용하여 식각공정이 연구되었다. E-beam lithography로 패턴된 TiN/MTJ stack은 첫 번째 단계로 TiN 하드 마스크가 식각되고 두 번째로 MTJ stack이 식각되어 완성되었다. MTJ stack은 Ar, $Cl_2/Ar$, $BCl_3/Ar$을 이용하여 식각되었으며 각각의 가스농도와 가스 압력을 변화시켜 MTJ stack의 식각특성이 조사되었다.

액상환원법으로 제조한 은 나노입자의 크기와 분산특성 (Size and Dispersion Characteristics of Silver Nanoparticles Prepared Using Liquid Phase Reduction Method)

  • 이종집
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.10-16
    • /
    • 2016
  • 본 연구에서는 PAA를 사용한 액상환원법에 의해 은 나노용액을 합성하는 과정에서 실험변수로서 PAA의 분자량, PAA의 첨가량, 환원제, 분산제, 유기용매 등을 사용하여 은 나노입자의 크기와 분산특성을 조사하였다. UV-Visable spectrophotometer로 은 나노입자의 생성을 확인하였으며, SEM으로 nanometer 영역의 입자크기와 분산특성을 알아냈다. 초음파 파쇄시간이 증가할수록 은 나노입자의 덩어리가 작아지는 경향을 나타내며 3시간 이후에는 1-5개의 작은 덩어리 형태로 은 나노입자가 분산되었다. 초음파 파쇄와 함께 Copolymer with pigment affinic group을 주성분으로 하는 분산제인 BYK-192를 첨가해 주면 49.56-85.75 nm의 크기를 가진 비교적 구형에 가까운 균일한 은 나노입자가 균일하게 완전히 분산되는 되었다. PAA의 분자량이 증가할수록 은 나노입자의 평균크기가 36.82<50.66<56.06 nm 순으로 증가하였다. 또한 PAA의 첨가량이 늘어날수록 은 나노입자의 표면에 덧씌움 현상이 일어나서 은 나노입자의 크기가 커지는 것으로 나타났다. 환원제인 Hydrazine을 첨가하면 환원반응에 의해 많은 수의 핵이 생성되었기 때문에 상대적으로 작은 크기의 입자가 생성되었다. 유기용제(에타놀-아세톤)는 은 나노입자의 규칙적 배열을 도와주었다.

Integrated Nano Optoelectronics

  • Jo, Moon-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.117-117
    • /
    • 2012
  • Si:Ge alloy semiconductor nanocrystals (NCs) offer challenging opportunities for integrated optoelectronics/optoplasmonics, since they potentially allow unprecedentedly strong light-matter interaction in the wavelength range of the optical communication. In this talk, we discuss the recent research efforts of my laboratory to develop optoelectronic components based on individual group IV NCs. We present experimental demonstration of the individual NC optoelectronic devices, including broadband Si:Ge nanowire (NW) photodetectors, intra NW p-n diodes, Ge NC electrooptical modulators and near-field plasmonic NW detectors, where the unique size effects at the nanometer scales commonly manifest themselves. In particular, we demonstrated a scanning photocurrent imaging technique to investigate dynamics of photocarriers in individual Si:Ge NWs, which provides spatially and spectrally resolved local information without ensemble average. Our observations represent inherent size-effects of internal gain in semiconductor NCs, thereby provide a new insight into nano optoplasmonics.

  • PDF

공기 냉각 방식의 래핑을 이용한 구리 기판 연마 공정 개발 (Thick Copper Substrate Fabrication by Air-Cooled Lapping and Post Polishing Process)

  • 이호철;김동준;이현일
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.616-621
    • /
    • 2010
  • New type of the base material of the light-emitting diode requires copper wafer in view of heat and electrical conductance. Therefore, polishing process of the substrate level is needed to get a nanometer level of surface roughness as compared with pattern structure of nano-size in the semiconductor industry. In this paper, a series of lapping and polishing technique is shown for the rough and deflected copper substrate of thickness 3mm. Lapping by sand papers tried air cooling method. And two steps of polishing used the diamond abrasives and the $Al_2O_3$ slurry of size 100mm considering the residual scratch. White-light interferometer proved successfully a mirror-like surface roughness of Ra 6nm on the area of $0.56mm{\times}0.42mm$.

Hole effect를 고려한 AAO(Anodic Aluminum Oxide) 구조물의 물성치에 대한 연구 (The Study on Properties of AAO(Anodic Aluminum Oxide) Structures with Hole Effect)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.186-193
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometer-scale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective methods to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

나노구조재료의 소성변형 성질의 변형률속도 의존성 (Strain Rate Dependence of Plastic Deformation Properties of Nanostructured Materials)

  • 윤승채;김형섭
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.65-70
    • /
    • 2005
  • A phase mixture model was employed to simulate the deformation behaviour of metallic materials covering a wide grain size range from micrometer to nanometer scale. In this model a polycrystalline material is treated as a mixture of two phases: grain interior phase whose plastic deformation is governed by dislocation and diffusion mechanisms and grain boundary 'phase' whose plastic flow is controlled by a boundary diffusion mechanism. The main target of this study was the effect of grain size on stress and its strain rate sensitivity as well as on the strain hardening. Conventional Hall-Petch behaviour in coarse grained materials at high strain rates governed by the dislocation glide mechanism was shown to be replaced with inverse Hall-Petch behaviour in ultrafine grained materials at low strain rates, when both phases deform predominantly by diffusion controlled mechanisms. The model predictions are illustrated by examples from literature.