• Title/Summary/Keyword: nanometer sized

Search Result 119, Processing Time 0.029 seconds

Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics (액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성)

  • Koo, Hye Young;Yun, Jung-Yeul;Yang, Sangsun;Lee, Hye-Moon
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

Structure of Ni and NiO Nanoparticles Observed by X-ray Coherent Diffraction Imaging

  • Kim, Chan;Kim, Yoon-Hee;Hamh, Sun-Young;Son, Jun-Gon;Khakurel, Krishna Prasad;Iqbal, Mazhar;Noh, Do-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.542-543
    • /
    • 2012
  • Coherent diffraction imaging (CDI) method using hard x-ray at 5.46 keV was applied to study assembly of Ni and Ni oxide nano structures formed on a Si3N4 membrane. Density distribution of Ni nano-particles was obtained quantitatively with about 15 nm lateral resolution by reconstructing images from the speckle diffraction pattern. In addition, reconstructed images of nickel oxide particles indicated that Ni atoms diffuse out during the oxidation process leaving pores inside the nickel oxide crust. Furthermore, we recognize that really weak phase object, less than 5 nm thickness of Ni residues, can be reconstructed due to the reference particles. We achieved quantitative information of nanometer sized materials and demonstrate the effect of reference particles by using hard x-ray coherent diffractive imaging method.

  • PDF

Formation of Oriented Hydroxyapatite Rods by Hydrothermal Treatment of Calcite Single Crystal

  • Kim, Ill-Yong;Kikuta, Koichi;Ohtsuki, Chikara
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.397-402
    • /
    • 2012
  • Morphological control on hydroxyapatite crystals has attractive prospects in research to clarify the effects of crystal planes on biological performance. Hydrothermal processing is known as a typical type of processing for fabricating well-grown crystals with unique morphology. The purpose of the present study is to examine the feasibility of well-crystallized crystals with oriented structures through hydrothermal treatment of calcite. A single crystal of calcite was applied to hydrothermal treatment in a phosphate solution at $160^{\circ}C$. Rod-shaped hydroxyapatite crystals with micrometer-size were formed on the {100} face of calcite after treatment, while nanometer-sized hydroxyapatite crystals were formed on the (111). The hydroxyapatite crystals formed on each plane were not morphologically changed with increasing treatment periods. An oriented structure of rod-shaped hydroxyapatite was constructed after hydrothermal treatment of {100} planes on the calcite single, while such orientation was not observed on the (111) plane after the treatment. The layer of hydroxyapatite formed on the {100} plane was thicker than that of the (111) plane. The {100} plane of calcite shows a higher reactivity than that of the (111) plane, which results in rapid crystal growth of hydroxyapatite. The difference in the morphology of the formed hydroxyapatite was governed by the reactivity of each crystal plane exposed to the surrounding solution.

The Effect of the Ceramic Precipitates on the Hydrogen Solubility in Pd Alloys

  • Koh, Je Mann;Lee, Kil Hong;Baek, Seung Nam;Noh, Hak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.101-106
    • /
    • 1999
  • Hydrogen solubility in internally oxidized Pd-Mo(Al) alloys has been studied at 323 K from the measurements of pressure-composition(p-c) isotherms. Internal oxidation of $Pd_{0.985}Al_{0.015}$ and $Pd_{0.97}Mo_{0.03}$ alloys results in the precipitation of Al and Mo particles in a matrix of pure Pd. It has been observed that the presence of the aluminum and molybdenum oxide precipitates results in an enhanced hydrogen solubility in the dilute phase region of Pd-H in a Pd/aluminum(molybdenum)oxide composites. Hydrogen solubility enhancements due to the presence of residual stresses around ceramic particles have been observed from p-c isotherms determined at 323 K after oxidation at 1073 K. The solubility enhancements in completely internally oxidized alloys are greater than that in partially oxidized alloys. The stress fields near the ceramic precipitates are the major source of the solubility enhancements. Transmission electron microscopy indicates that alumina precipitates are nanometer-sized and coherent with the Pd matrix after oxidation.

  • PDF

Mechanical characterization of 100 nm-thick Au thin film using strip bending test (띠 굽힘 시험을 통한 100 nm 두께 금 박막의 기계적 특성 평가)

  • Kim, J.H.;Lee, H.J.;Han, S.W.;Baek, C.W.;Kim, J.M.;Kim, Y.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.252-257
    • /
    • 2004
  • Nanometer-sized structures are being applied to many devices including micro/nano electronics, optoelectronics, quantum devices, MEMS/NEMS, biosensors, etc. Especially, the thin film with submicron thickness is a basic structure for fabricating these devices, but its mechanical behaviors are not well understood. The mechanical properties of the thin film are different from those of the bulk structure and are difficult to measure because of its handling inconvenience. Several techniques have been applied to mechanical characterization of the thin film, such as nanoindentation test, micro/nano tensile test, strip bending test, etc. In this study, we focus on the strip bending test because of its high accuracy and moderate specimen preparation efforts, and measure Au thin film, which is a very popular material in micro/nano electronic devices. Au film is deposited on Si substrate by evaporation process, of which thickness is 100nm. Using the strip bending test, we obtain elastic modulus, yield and ultimate tensile strength, and residual stress of Au thin film.

  • PDF

Comparison of the Characteristics of Spray Cooling between Water and Nanofluid Sprays (물과 알루미나 나노유체 분무의 분무냉각특성 비교)

  • Kang, B.S.;Lee, S.P.
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.88-93
    • /
    • 2014
  • Nanofluids is that metallic or nonmetallic nanometer-sized particles are dispersed in liquid and they can be used in various fields to increase the heat transfer rate. This study conducted experiments to evaluate whether the cooling efficiency of nanofluids is better than that of water in spray cooling. A heated surface was designed and fabricated to make the temperature distribution be linear, which was confirmed by three thermocouple measurements under the heated surface. Spray cooling experiments were conducted using water, 0.2% wt. (weight), and 0.5% wt. $Al_2O_3$ nanofluids at the pressure of 0.2 MPa and 0.3 MPa. Based on the results, it is shown that the cooling efficiency of nanofluids is higher than that of water especially in the region of single phase heat transfer. As a result, we can expect that nanofluids can be used as efficient coolants in the cooling of electronic packages where the temperature of the heated surface is not high enough for boiling incipience.

Recombinant Human L-ferritin from Saccharomyces cerevisiae: Molecular Characterization and Synthesis of Iron Oxide Nanoparticles (효모에서 생산한 재조합 human L-ferritin의 생화학적 특성 및 나노입자의 철산화물 합성)

  • Kim, Kyung-Suk
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.119-125
    • /
    • 2011
  • In the synthesis of nanoparticles, much attention has been paid to regulating the particle size. There has been a possible evident that using the central cavity (core) of the protein ferritin has a greatly significant influence on it because the core can generate the nanometer-sized mineral particles of variable metal ions. In this report, recombinant human L-ferritins produced from Saccharomyces cerevisiae were purified and their molecular properties were characterized. The cDNA for human ferritin L chain was also expressed in another host such as Escherichia coli, and the properties of recombinant L-ferritins were compared. From isoelectric focusing experiment, the L-ferritin from the recombinant yeast showed no indication of N-glycosylation. Some post-translational modifications other than N-glycosylation were speculated in the L-ferritins from yeast. A difference was made in the L-ferritins in their iron uptake rates and the initial rate of the L-ferritin from yeast was slightly increased. The reconstitution yield and size distribution of the core minerals were analyzed in the L-ferritins by transmission electron microscopy. The L-ferritin from yeast with higher reconstitution yield (54.5%) showed slightly larger sizes (mean 6.92 nm) with narrower size distribution than the L-ferritin from E. coli. It is, in conclusion, speculated that L-ferritin from yeast is relatively superior to the other, in view of the size of nanoparticle and its relative homogeneity.

Preparation of Ga2O3:Eu3+ Phosphor by Pechini Method (Pechini법에 의한 Ga2O3:Eu3+ 형광체 분말의 제조)

  • Park, In-Yong;Lee, Jong-Won;Kim, Seon-Tai
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.517-521
    • /
    • 2002
  • Europium-activated $Ga_2$$O_3$ phosphor powders were prepared by Pechini method from the mixed aqueous solutions of gallium(III) nitrate, europium(III) nitrate, ethylene glycol and citric acid. The phase formation process and particle shape of the powders obtained were investigated by means of TG/DTA, XRD and SEM. It was found that the powders were amorphous or ${\gamma}$-$Ga_2$$O_3$-like phase up to $500^{\circ}C$ and then transformed into $\beta$- $Ga_2$$O_3$ phase above $600 ^{\circ}C$. The powders calcined below $1000^{\circ}C$ were spherical and nanometer-sized. Photoluminescence spectra measured at room temperature showed that the highest luminescence intensity was obtained for the sample synthesized under the conditions of 2 mol% Eu concentration and heat treatment at $1000^{\circ}C$.

Synthesis of Nanoporous NiO-SiO2 Pillared Clays and Surface Modification of the Pillaring Species (나노다공성 NiO-SiO2 가교화 점토의 합성 및 가교물질의 표면개질 연구)

  • Yoon, Joo-Young;Shim, Kwang-Bo;Moon, Ji-Woong;Oh, You-Keun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.81-85
    • /
    • 2004
  • Nanoporous materials with nanometer-sized pores, are of great interest in the various applications such as selective adsorbents, heterogeneous catalysts and catalyst supports because of their high porosity, surface area, and size selective adsorption properties. This study is aimed to prepare nanoporous catalytic materials on the basis of two-dimersional clay by pillaring of $SiO_2$ sol particles. $SiO_2$ Pillared Montmorillonite (Si-PILM) was prepared by ion exchanging the interlayer $Ni^{2+}$ ions of clay with $SiO_2$ nano-sized particles of which the surface was modified with nicked polyhydroxy cations sach as $Ni_4(OH)_4^{4+}$. Nano-sized $SiO_2$ particles were formed by the controlled hydrolysis of tetraethyl orthosilicate (TEOS). Upon pillaring of $Ni^+$-modified $SiO_2$ nano particles between the clay layers, the basal spacing was expanded largely to $45{\AA}$ and the extremely large specific surface area ($S_{BET}$) of $760m^2/g$ was obtained.

The Study of Plate Powder Coated Nano Sized ZnO Synthesis and Effect of Sensory Texture Improvement (나노 ZnO 입자가 코팅된 판상 분체의 합성과 사용감 증진 효과에 대한 연구)

  • Jin-Hwa , Lee;Ju-Yeol, Han;Sang-Gil, Lee;Hyeong-Bae, Pyo;Dong-Kyu, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.173-180
    • /
    • 2004
  • Nano sized ZnO particle as 20-30nm applies for material, pigments, rubber additives, gas sensors, varistors, fluorescent substance as well as new material such as photo-catalyst, sensitizer, fluorescent material. ZnO with a particle size in the range 20-30nm has provided to be an excellent UV blocking material in the cosmetics industry, which can be used in sunscreen product to enhance the sun protection factor and natural makeup effect. But pure ZnO particles application limits for getting worse wearing feeling. We make high-functional inorganic-composite that coated with nano-ZnO on the plate-type particle such as sericite, boron nitride and bismuthoxychloride. In this experiment, we synthesized composite powder using hydrothermal precipitation method. The starting material was ZnCl$_2$ Precipitation materials were used hexamethylenetetramine(HMT) and urea. We make an experiment with changing as synthesis factors that are concentrations of starting material, precipitation materials, nuclear formation material, reaction time, and reaction temperature. We analyzed composite powder's shape, crystallization and UV-blocking ability with FE-SEM, XRD, FT-IR, TGA-DTA, In vitro SPF test. The user test was conducted by product's formulator. In the results of this study, nanometer sized ZnD was coated regardless of the type of plate-powder at fixed condition range. When the coated plate-powders were applied in pressed powder product, the glaze of powder itself decreased, but natural make-up effect, spreadability, and adhesionability were increased.