• Title/Summary/Keyword: nanoliposome

Search Result 5, Processing Time 0.016 seconds

Stabilization of Astaxanthin Using Nanoliposome (나노리포좀을 이용한 astaxanthin의 안정화)

  • Yoo, Ji-Min;Kim, So-Young;Cho, Eun-Ah;Cho, Eun-Hye;Choi, Sun-Ju;Jeong, Yoon-Joo;Ha, Byung-Jhip;Chae, Hee-Jeong
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.130-136
    • /
    • 2010
  • Astaxanthin is an unsaturated compound with a double bond. So it is easily decayed by heat and oxidation (light) during its storage and processing of it. Nanoliposome formulation technology was utilized to improve the stability of astaxanthin. Nanoliposome preparation conditions were established and the stability of astaxanthin encapsulated nanoliposome and free astaxanthin was investigated. Thermal stability and UV-stability of astaxanthin encapsulated nanoliposome increased up to two times and tree times, respectively. Astaxanthin encapsulated nanoliposome could be used as a stable functional material for industrial purposes.

The Application of Nanoliposome Composed of Ceramide as an Anti-irritant in Cosmetics (세라마이드를 구성성분으로 하는 나노리포좀의 응용 - 화장품에서의 자극완화제)

  • Jo Byoung Kee;Ahn Gi Woong;Shin Bong Soo;Jeong Ji Hean;Park Hae-Ryong;Hwang Yong-Il
    • Journal of Life Science
    • /
    • v.15 no.2 s.69
    • /
    • pp.267-272
    • /
    • 2005
  • The objective of this study is to suggest the potentialities of nanoliposome composed of ceramide as an anti-irritant against various irritants used in cosmetics. Ceramides are major structural components of the epidermal permeability barrier, which is known to play an essential part in human physiology by not only preventing the loss of water from the body but also protecting the body from external physical, chemical, and microbial insults. According to the results, better effects on reinforcement of skin barrier function and anti-irritation were obtained with nanoliposome composed of ceramide than with dispersed ceramide. And, we performed in vitro skin penetration test using horizontal Franz diffusion cells with skin membrane prepared from hairless mouse to evaluate the influence of nanoliposome composed of ceramide on the skin penetration of lactic acid in formulations. From the results, we found that the anti-irritation effects of nanoliposome containing ceramide were due to reduced penetration rate of irritants. Conclusively, we could develop a new anti-irritation system and apply this nanoliposome composed of ceramide to the final cosmetic products successfully.

Assessment of the potential of algae phycobiliprotein nanoliposome for extending the shelf life of common carp burgers during refrigerated storage

  • Haghdoost, Amir;Golestan, Leila;Hasani, Maryam;Noghabi, Mostafa Shahidi;Shahidi, Seyed Ahmad
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.276-286
    • /
    • 2022
  • This study is focused on the effect of phycobiliprotein extraction of Gracilaria on the quality of common carp burgers, and the application of nanoliposomes containing pigment in the improvement of its antimicrobial and antioxidant activity of burgers during refrigerated storage in 18 days. Burgers were incorporated with phycobiliprotein and liposomal phycobiliprotein (2.5% and 5% w/w), and their chemical and microbial changes in terms of pH, peroxide value (PV), thiobarbituric acid (TBA), total volatile basic nitrogen (TVB-N), total viable counts (TVC), psychrotrophic bacterial counts (PTC), and sensory characteristics were evaluated. Results presented a nanoliposome size of about 515.5 nm with capable encapsulation efficiency (83.98%). Our results showed non-encapsulated phycobiliprotein could delay the deterioration of common carp burgers, as a reduction in PV, TBA, and TVB-N, TVC, and PTC values in burgers treated with free and nano encapsulated phycobiliprotein. Moreover, the potential of phycobiliprotein was improved when it was encapsulated into chitosan coated liposomes. Burgers treated with 5% nanoliposomes displayed the lowest amount of lipid oxidation and microbial deterioration in comparison to others during storage. According to chemical, microbial and sensory evaluation, the shelf life of common carp burgers was increased in samples treated with encapsulated phycobiliprotein at 2.5% and 5%, as compared to the control (p ≤ 0.05).

Nanoliposomes of L-lysine-conjugated poly(aspartic acid) Increase the Generation and Function of Bone Marrowderived Dendritic Cells

  • Im, Sun-A;Kim, Ki-Hyang;Ji, Hong-Geun;Yu, Hyoung-Gyoung;Park, Sun-Ki;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.11 no.5
    • /
    • pp.281-287
    • /
    • 2011
  • Background: Biodegradable polymers have increasingly been recognized for various biological applications in recent years. Here we examined the immunostimulatory activities of the novel poly(aspartic acid) conjugated with L-lysine (PLA). Methods: PLA was synthesized by conjugating L-lysine to aspartic acid polymer. PLA-nanoliposomes (PLA-NLs) were prepared from PLA using a microfluidizer. The immunostimulatory activities of PLA-NLs were examined in mouse bone marrow-derived dendritic cells (BM-DCs). Results: PLA-NLs increased the number of BM-DCs when added to cultures of GM-CSF-induced DC generation on day 4 after the initiation of cultures. Examination of the phenotypic properties showed that BM-DCs generated in the presence of PLA-NLs are more mature in terms of the expression of MHC class II molecules and major co-stimulatory molecules than BM-DCs generated in the absence of PLA-NLs. In addition, the BM-DCs exhibited enhanced capability to produce cytokines, such as IL-6, IL-12, TNF-${\alpha}$ and IL-$1{\beta}$. Allogeneic mixed lymphocyte reactions also confirmed that the BMDCs were more stimulatory on allogeneic T cells. PLA- NL also induced further growth of immature BM-DCs that were harvested on day 8. Conclusion: These results show that PLA-NLs induce the generation and functional activities of BM-DCs, and suggest that PLA-NLs could be immunostimulating agents that target DCs.

Preparation of Nano-liposome by Sonication and Pressure (초음파와 압력을 이용한 나노 리포솜의 제조)

  • Lee, Jung-Min;Cho, Yong-Jin;Park, Dong-Joon;Ko, Sung-Ho;Lee, Seung-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.115-117
    • /
    • 2008
  • Liposomes are artificial membranes prepared by phospholipid. In this study, liposomes were prepared by dehydration-rehydration method, and then nano-sized by sonication and pressure. The sizes of the prepared multilamellar vesicles (MLV) were greater than 10 μm. Sonication with a tip-type sonifier or pressurization with a French press on MLV were carried out to reduce size. Sonication with an output of 112.5 W for 10 min on MLV resulted in sizes less than 450 nm. French press with 6,000 psi of pressure was able to manufacture liposomes of approximately 100 nm uniformly. Also, the sonication or pressure clarified the color of the liposome solutions. The results indicate that sonication and pressure via French press can be applied to obtain nano-sized liposomes.