• Title/Summary/Keyword: nanofluids

Search Result 160, Processing Time 0.034 seconds

An Experimental Study of Transient Hot-wire Sensor Module for Measuring Thermal Diffusivity of Nanofluids (나노유체의 열확산율 측정을 위한 비정상열선법 센서모듈 실험)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • A technique for measuring the thermal diffusivity of nanofluids is proposed in this study. In theory, it has been well known that the transient hot-wire method can be used to measure the thermal conductivity and diffusivity of fluids simultaneously. However, when traditional methods were employed, the accuracy of the calculated thermal conductivity was considerably higher than that of diffusivity. The proposed method has two advantages for practical use: it only needs a simple data-conversion process for calculating the diffusivity, and it can skip the tedious calibration process involved in the case of a wire sensor. A validation experiment for the new system has been performed with the basic fluids, and the comparison experiment to compare the change in diffusivity of the base oil and the change in diffusivity of the nano oil has been carried out. It is expected that the present system will provide numerous methods for investigating the variation in the thermal properties other than thermal conductivity.

Experimental of Absorption Performance Enhancement for Binary Nanofluids($NH_3/H_2O$ + Nano Particles) (이성분 나노유체($NH_3/H_2O$+나노입자)의 흡수성능 촉진실험)

  • Lee, Jin-Ki;Jung, Chung-Woo;Koo, June-Mo;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.124-129
    • /
    • 2008
  • The objectives of this paper are to examine the effect of nano-particles on the pool type absorption heat transfer enhancement and to find the optimal conditions to design a highly effective compact absorber for $NH_3/H_2O$ absorption system. The effect of $Al_2O_3$ and CNT particles on the absorption performance is studied experimentally. The experimental ranges of the key parameters are 20% of $NH_3$ concentration, $0{\sim}0.08%$ (volume fraction) of CNT particles, and $0{\sim}0.06%$ (volume fraction) of $Al_2O_3$ nano-particles. For the $NH_3/H_2O$ nanofluids, the heat transfer rate and absorption rate with 0.02 vol% $Al_2O_3$ nano-particles were found to be 28.9% and 17.8% higher than those without nano-particles, respectively. It is recommended that the concentration of 0.02 vol% of $Al_2O_3$ nano-particles be the best candidate for $NH_3/H_2O$ absorption performance enhancement.

  • PDF

Boiling Heat Transfer Coefficients of Nanofluids Containing Carbon Nanotubes up to Critical Heat Fluxes (탄소나노튜브 적용 나노유체의 임계 열유속까지의 비등 열전달계수)

  • Park, Ki-Jung;Lee, Yo-Han;Jung, Dong-Soo;Shim, Sang-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.665-676
    • /
    • 2011
  • In this study, the nucleate pool boiling heat transfer coefficients (HTCs) and critical heat flux (CHF) for a smooth and square flat heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at $60^{\circ}C$ were measured. Tested aqueous nanofluids were prepared using CNTs with volume concentrations of 0.0001%, 0.001%, and 0.01%. The CNTs were dispersed by chemically treating them with an acid in the absence of any polymers. The results showed that the pool boiling HTCs of the nanofluids are higher than those of pure water in the entire nucleate boiling regime. The acid-treated CNTs led to the deposition of a small amount of CNTs on the surface, and the CNTs themselves acted as heat-transfer-enhancing particles, owing to their very high thermal conductivity. There was a significant increase in the CHF- up to 150%-when compared to that of pure water containing CNTs with a volume concentration of 0.001%. This is attributed to the change in surface characteristics due to the deposition of a very thin layer of CNTs on the surface. This layer delays nucleate boiling and causes a reduction in the size of the large vapor canopy around the CHF. This results in a significant increase in the CHF.

Synthesis and Characterization of Silver Nanofluid Using Pulsed Wire Evaporation Method in Liquid-Gas Mixture (액상/기상중 전기선 폭발법을 이용한 은 나노유체의 제조 및 특성평가에 관한 연구)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.468-472
    • /
    • 2009
  • The silver nanofluids were synthesized by the pulsed wire evaporation (PWE) method in a liquid-gas mixture. The size and microstructure of nanoparticles in the deionized water were investigated by a particle size analyzer (PSA), transmission electron microscope (TEM), and scanning electron microscope (SEM). Also, the synthesized nanofluids were investigated in order to assess the stability of dispersion of nanofluid by the zetapotential analyzer and dispersion stability analyzer. The results showed that the spherical silver nanoparticle formed in the deionized water and mean particle size was about 50 nm. Also, when explosion times were in the range of 20$\sim$200 times, the absolute value of zeta potential was less than -27 mV and the dispersion stability characteristic of low concentration silver nanofluid was better than the high concentration silver nanofluid by turbiscan.

Experimental investigation of heat transfer characteristics of alumina nanofluid (알루미나 나노유체의 열전달 특성에 관한 실험적 연구)

  • Kim, Yeong-Geun;Jo, Sun-Hyeng;Seong, Yong-Jin;Chung, Han-Shik;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.16-21
    • /
    • 2013
  • Nanofluids are suspensions of metallic or nonmetallic nano powders in base liquid and can be employed to increase heat transfer rate in various applications. In this research the heat transfer characteristics has been experimented by alumina(50 nm)/water nano-fluids. Experimental results showed that the increasing the concentration of alumina nanofluids local and average heat transfer coefficient increased. The local heat transfer coefficient of 6 Wt% nanofluid was increased 37~46% than water at X/D=50~120. The average heat transfer coefficient of 6 Wt% nanofluid was rapidly increased than water at Reynolds number 1100~1300.

Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid (유체 내 전기선폭발법에 의한 은 나노입자 유체의 제조 및 특성)

  • Park, E.J.;Bac, L.H.;Kim, J.S.;Kwon, Y.S.;Kim, J.C.;Choi, H.S.;Chung, Y.H.
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.217-222
    • /
    • 2009
  • This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.

Characterization of carbon nanofluids applicable to heat transfer fluids (열전달 유체 적용을 위한 카본 나노유체 특성 분석)

  • Kim, Doo-Hyun;Hwang, Yu-Jin;Kwon, Yeoung-Hwan;Lee, Jae-Keun;Hong, Dae-Seung;Moon, Seong-Young;Kim, Soo-H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.538-541
    • /
    • 2008
  • The carbon laden suspensions in water with no surfactants have poor stability caused by the hydrophobic layer of particles. In this study, the water-based carbon nano colloide(CNC) was successfully produced using electro-chemical one-step method without agent. The properties of CNC were characterized by using various techniques such as particle size analyzer, TEM, FT-IR, turbidity meter, viscometer, and transient hot-wire method. The average size of the suspended in the CNC was 15 nm in diameter. The thermal conductivity of CNC compared with water was increased up to 14% with 4.2wt% concentration. The CNC was stable over 600hr. The enhanced colloidal stability of CNC may be caused by the chemical structures, such as, hydroxide and carboxyl groups formed in outer atomic layer of carbon, which (i) made the carbon nanofparticles hydrophilic and (ii) prevented the aggregation among nanoparticles.

  • PDF

Heat transfer enhancement of nanofluids in a pulsating heat pipe for heat dissipation of LED lighting

  • Kim, Hyoung-Tak;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1200-1205
    • /
    • 2014
  • The effect of nanofluids on the heat transfer performance of a pulsating heat pipe has been experimentally investigated. Water-based diamond nanofluid and aluminium oxide ($Al_2O_3$) nanofluid were tested in the concentration range of 0.5-5%. The pulsating heat pipe was constructed using clear Pyrex tubes of 1.85 mm in inner diameter in order to visualize the pulsating action. The total number of turns was eight each for heated and cooled parts. The supply temperatures of heating water and cooling water were fixed at $80^{\circ}C$ and $25^{\circ}C$ respectively. The liquid charging ratio of the nanofluid was 50-70%. The test results showed that the case of 5% concentration of diamond nanofluid showed 18% increase in heat transfer rate compared to pure water. The case of 0.5% concentration of $Al_2O_3$ nanofluid showed 24% increase in heat transfer rate compared to pure water. But the increase of $Al_2O_3$ nanofluid concentration up to 3% did not show further enhancement in heat transfer. It is also observed that the deposited nanoparticles on the tube wall played a major role in enhanced evaporation of working fluid and this could be the reason for the enhancement of heat transfer by a nanofluid, not the enhanced thermal conductivity of the nanofluid.

A New Mechanism for Enhanced Beat Transport of Nanofluid (나노유체의 열전도도 향상에 관한 새로운 메커니즘)

  • Lee Dong-Geun;Kim Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.560-567
    • /
    • 2006
  • Although various conjectures have been proposed to explain abnormal increase in thermal conductivity of nanofluids, the detailed mechanism could not be understood and explained yet. The main reason is primarily due to the lack of knowledge on the most fundamental factor governing the mechanisms such as Brownian motion, liquid layering, phonon transport, surface chemical effects and agglomeration. By applying surface complexation model for the measurement data of hydrodynamic size, zeta potential, and thermal conductivity, we have shown that sulfate charge state is mainly responsible for the increase in the present condition and may be the factor incorporating all the mechanisms as well. Moreover, we propose a new model including concepts of fractal and interfacial layer. The properties such as thickness and thermal conductivity of the layer are estimated from the surface charge states and the concept of electrical double layer. With this, we could demonstrate the pH dependences of the layer properties and eventually of the effective thermal conductivity of the nanofluid.