• Title/Summary/Keyword: nanofluids

Search Result 160, Processing Time 0.027 seconds

Experimental Study on Evaporation and Combustion Characteristics of Fuel Droplet with Carbon Nano-Particles in RCM (급속압축장치에서 탄소 나노입자가 첨가된 연료 액적의 증발 및 연소 특성에 관한 실험적 연구)

  • Ahn, Hyeongjin;Jyoti, Botchu Vara Siva;Baek, Seung Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.7-14
    • /
    • 2016
  • Evaporation and combustion characteristics of fuel droplet with carbon nanoparticle were investigated in a rapid compression machine(RCM). RCM is an experimental equipment to simulate one compression stroke of reciprocating engine. Nitrogen was charged into reaction chamber for evaporation experiment, while oxygen was charged for combustion experiment. N990 carbon black and n-heptane were used to synthesize the carbon nanofluids. Surfactant, span80, was used to make synthesis easier. The droplet pictures were taken using a high speed camera with 500 frames per second. Thermocouple, of which tip is $50{\mu}m$, was used not only to measure transient bulk temperature, but also to suspend the droplet. Reaction chamber temperature was calculated from pressure data. The evaporation rate of nanofluids was improved compared to pure fuel. The ignition delay was promoted due to the nanoparticle, but the burning rate was decreased.

Effect of Brownian Motion in Heat Transfer of H2O-Cu Nanofluid using LBM

  • Li, Kui-Ming;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.981-990
    • /
    • 2010
  • The main objective of this study is to investigate the fluid flow and the heat transfer characteristics of nanofluids using multi-phase thermal LBM and to realize theenhancement of heat transfer characteristics considered in the Brownian motion. In multi-phase, fluid component($H_2O$) is driven by Boussinesq approximation, and nanoparticles component by the external force gravity and buoyancy. The effect of Brownian motion as a random movement is modified to the internal velocity of nanoparticles(Cu). Simultaneously, the particles of both the phases assume the local equilibrium temperature after each collision. It has been observed that when simulating $H_2O$-Cu nanoparticles, the heat transfer is the highest, at the particle volume fraction 0.5% of the particle diameter 10 nm. The average Nusselt number is increased approximately by 33% at the particle volume fraction 0.5% of the particle diameter 10 nm when compared with pure water.

Fluid Flow and Convective Heat Transfer Characteristics of Al2O3 Nanofluids (알루미나 나노유체의 유동 및 대류 열전달 특성)

  • Hwang, Kyo-Sik;Lee, Ji-Hwan;Lee, Byeong-Ho;Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.16-20
    • /
    • 2007
  • In this paper, convective heat transfer and flow characteristics of $Al_2O_3$ nanoparticles suspended in water flowing through uniformly heated tubes are experimentally investigated under laminar flow regime. The heat transfer coefficient and the pressure drop of nanoparticles suspended in water are experimentally presented according to the pumping power. In addition, the heat transfer coefficient and the pressure drop of $Al_2O_3$ nanoparticles suspended in water are compared with those of pure water under the fixed pumping power. It is shown that the heat transfer coefficient of $Al_2O_3$ nanofluids with 0.1% volume fraction is enhanced by about 12% although the increment of the pressure drop of those is 4% compared with those of pure water.

Dispersion Technique of Alumina Nanoparticles in Transformer Oil (알루미나 나노분말을 함유한 변압기 절연유의 분산기술)

  • Song Hyunwoo;Choi Cheol;Choi Kyungshik;Oh Jemyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.233-239
    • /
    • 2006
  • Two different nanofluids were prepared by dispersing $Al_{2}O_3$ nanoparticles in transformer oil after hydrophobic surface modification. The agglomerated alumina nanoparticles with diameters from ${\mu}m$ to mm were ball-milled and then treated with surfactants such as lauric acid, stearic acid and oleic acid. The surface characteristics of modified nanoparticles were examined by FTIR spectroscopy. It showed that the hydrophobicity of nanoparticles was caused by esterification between hydroxyl groups on the particle surface and functional groups of surfactant. The shape and size distribution of ball-milled particles were analyzed by TEM and PSA. The results compared with the primary particles indicated that the size distributions of nanoparticles were dependant on milling times. The dispersion stability of modified nanoparticles dispersed in oil was highly dependent on the composition and amounts of surfactants.

Synthesis and Characterization of Cu Nanofluid Prepared by Pulsed Wire Evaporation Method (전기선 폭발법을 이용하여 제조된 구리 나노유체의 특성평가)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.270-275
    • /
    • 2010
  • Ethylene glycol-based Cu nanofluids were prepared by pulsed wire evaporation (PWE) method. The structural properties of Cu nanoparticles were studied by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The average diameter and Brunauer Emmett Teller (BET) surface area of Cu nanoparticles were about 100 nm and $7.46\;m^2/g$, respectively. The thermal conductivity and viscosity of copper nanofluid were measured as functions of Cu concentration and temperature. As the volume fraction of Cu nanoparticles increased, both the enhanced ratios of thermal conductivity and viscosity of Cu nanofluids increased. As the temperature increased, the enhanced ratio of thermal conductivity increased, but that ratio of viscosity decreased.

Fluid Flow Characteristics of $AL_2O_3$ Nanoparticles Suspended in Water (알루미나 나노유체의 유동 특성에 관한 연구)

  • Lee, Ji-Hwan;Jang, Seok-Pil
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.546-551
    • /
    • 2005
  • In this paper we report fluid flow characteristics of $AL_2O_3$ nanoparicles suspended in water. Especially, the effects of volume fraction with the range of 0.01% to 0.3% and inner diameter of tubes on the pressure drop and the effective viscosity of $AL_2O_3$ nanoparicles suspended in water are experimentally investigated. Experimental results are compared with analytic solution which can be derived with Einstein model. We confirm whether Einstein model which have been used to determine the effective viscosity of nanofluids is valid or not.

  • PDF

THE EFFECT OF MICRO/NANOSCALE STRUCTURES ON CHF ENHANCEMENT

  • Ahn, Ho-Seon;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.205-216
    • /
    • 2011
  • Recently, many research studies have investigated the enormous critical heat flux (CHF) enhancement caused by nanofluids during pool boiling and flow boiling. One of the main reasons for this enhancement is nanoparticle deposition on the heated surface. However, in real applications, nanofluids create many problems when used as working fluids because of sedimentation and aggregation. Therefore, artificial surfaces on silicon and metal have been developed to create an effect similar to that of nanoparticle deposition. These modified surfaces have proved capable of greatly increasing the CHF during pool boiling, and good results have also been observed during flow boiling. In this study, we demonstrate that the wetting ability of a surface, i.e., wettability, and the liquid spreading ability (hydrophilic surface property), are key parameters for increasing the CHF during both pool and flow boiling. We also demonstrate that when the fuel surface in nuclear power plants is modified in a similar manner, it has the same effect, producing a large CHF enhancement.

A Study on Prediction of Effective Thermal Conductivity of Nano-Fluids Using Generalized Self-Consistent Model and Modified Eshelby Model (일반화된 자기일치모델과 수정된 에쉘비 모델을 이용한 나노유체의 등가열전도계수 예측에 대한 연구)

  • Lee, Jae-Kon;Kim, Jin Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.887-894
    • /
    • 2013
  • Effective thermal conductivity of nanofluids has been predicted by using generalized self-consistent model and modified Eshelby model, which have been used for analysis of material properties of composites. A nanolayer between base fluid and nanoparticle, one of key factors for abrupt enhancement of thermal conductivity of nanofluids, is included in the analysis. The effective thermal conductivities of the nanofluid predicted by the present study show good agreement with those by models in the literature for the nanolayer with a constant or linear thermal conductivity. The predicted results by the present approach have been confirmed to be consistent with experiments for representative nanofluids such as base fluids of water or ethyleneglycol and nanoparticles of $Al_2O_3$ or CuO to be validated.