• Title/Summary/Keyword: nanofiltration membrane

Search Result 193, Processing Time 0.025 seconds

Separation performances of a nanofiltration membrane for chlorides, nitrates and sulfates aqueous solutions

  • Wang, Da-Xin;Su, Meng;Wang, Xiao-Lin
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.155-160
    • /
    • 2004
  • Permeation experiments of a commercial nanofiltration membrane (nominated as ESNA 1) were carried out with aqueous solutions of various single salts, that is, five chlorides (NH$_4$Cl, NaCl, KCl, MgCl$_2$ and $CaCl_2$), three nitrates $(NaNo_3,\;Mg(No_3)_2\;and\;Ca(NO_3)_2)\;and\;three\;sulfates\;((NH_4)_2SO_4,\;Na_2SO_4\;and\;MgSO_4)$. The experimental results showed that (1) the permeate volume flux of the ESNA 1 membrane increased and decreased with the growth of the applied pressure and the feed concentration of salts, respectively. The real rejection of ESNA 1 membrane to most single salts increased with the growth of the permeate volume flux. (2) The reflection coefficients of ESNA 1 membrane to chlorides, nitrates and sulfates are 0.97, 0.96 and 0.99, respectively. The solute permeability of most salts except for magnesium and calcium salts increased with the growth of feed concentration. (3) The sequence of the rejections of ESNA 1 membrane to anions is $R({SO_4}^{2-})>R(CI)>R(NO_3)$ at the same feed concentration. While the sequence of the rejections to cations is cataloged into two cases: $R(Na^+)>R(K^+)>R(Mg^{2+})>R(Ca^{2+})$ at the concentration of 10 mol/$m^3$ and $R(Mg^{2+})>R(Ca^{2+})>R(Na^+)>R(K^+)$ at the concentration of 100 mol/$m^3$. The separation capability of a NF membrane is usually affected by the electrostatic effect and the steric-hindrance effect. In this case, the electrostatic effect is the major factor at low concentration and the steric-hindrance effect is the major factor at high concentration. Both the specific sorption and the hydration also reasonably influenced the separation performance of NF membrane to salts.

  • PDF

The Characteristics of Treatment and Concentration of Dye Manufacturing Wastewater using Nanofiltration (Nanofiltration을 이용한 염료폐수처리와 농축특성)

  • 변기수;고상열;노수홍;이종철
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.38-40
    • /
    • 1995
  • 분리막공정을 폐수처리에 적용시 적용되는 각 폐수의 특성과 조건에 따라 공정의 안정성 및 경제성에 많은 영향을 받게 된다. 특히 폐수에 대한 농축도는 공정의 경제성과 밀접한 관계를 갖고 있는 중요한 인자이다. 폐수중에 염류 및 난분해성 유기물의 농도가 높을 경우 최종 처리수의 양을 줄이지 않으면 추가로 농축수에 대한 처리비용이 증가하기 때문에 폐수에 대한 분리막의 농축특성을 실험을 통하여 충분히 고려하여야 한다. 난분해성 폐수의 일종인 염료폐수는 고농도의 유기물과 높은 염류를 함유하고 있어 분리막공정을 이용하여 처리시 농축도의 증가와 함께 폐수의 특성변화로 막의 성질을 변화시킬 수도 있다. 더불어 과포화된 무기이온성분에 의하여 막표면에 scale을 유발시킬 수 있으므로 농축에 따른 적절한 무기이온성분의 제거는 농축도를 높이는 중요한 인자라고 볼 수 있다. 본 연구에서는 2가 이온에 대한 선택적 배제가 가능한 nanfiltration계열의 분리막을 이용하여 염료폐수를 대상으로 처리효율, cold crystallization공정을 응용한 농축실험 및 세척효과에 관하여 연구하였다.

  • PDF

염색폐수처리를 위한 막분리공정의 문제점

  • 노수홍;안승호;최광호;민병렬
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1992.10a
    • /
    • pp.76-76
    • /
    • 1992
  • 본 연구의 목적은 국내 섬유산업에서 문제시되는 염색폐수처리에 막분리공정의 적용가능성과 문제점을 실험실규모와 pilot 규모의 실험을 통하여 규명하는 것이다. 염색폐수는 섬유의 가공공정에 따라 염료, 분산제, 정염제, 반응제 등 다양한 유기물질과 무기염을 함유하며 온도가 10-90$\circ$C로 높은 것이 특징이다. 본 연구에서는 2종류의 Nanofiltration: NF40, XU45; 두종류의 복합막; BW30, SW30HR; 2종류의 Cellulose Acetate 비대칭막의 평막 Sample을 사용하여 합성염색폐수의 배제율과 압력변화에 따른 투과수에 미치는 영향을 조사하였다. 실제 혼합염색폐수의 처리는 2개의 2.5"$\times$ 40" Nanofiltration 모듈을 장착한 Pilot 장치를 염색단지 종합처리장에 설치하여 3개월에 걸쳐 시행하였다. 현재까지 얻어진 실험결과에 의하면 전처리공정의 효율롸를 통해 부유물질에 의한 Fouling을 최소화하고 폐수의 성분분석과 사용된 막의 표면분석을 통한 체계적인 조사가 필요하다. 염색폐수처리에 막분리공정이 기존처리방법과 비교하여 경제성을 가지려면 효율적인 막세척방법을 개발하여 투과율의 감소를 최소화시켜야 한다.

  • PDF

Study on the Nanofiltration of Various Dye Solutions (NF막에 의한 다양한 염료용액의 막분리 특성)

  • Yang, Jeongmok;Kim, Tak-Hyun;Park, Cheolhwan;Kim, Jeehyeong;Kim, Sangyong
    • Clean Technology
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 2004
  • This study examined the separation characteristics of some of the most commonly used disperse, reactive and acid dyes by nanofiltration membrane. The chemical characteristics of three major dye solutions such as chemical oxygen demand, total nitrogen, total organic carbon, color, suspended solids, total dissolved solids, conductivity were investigated in this work. Experiments showed that the types of dye had a significant effect on both permeate flux and rejection efficiencies mainly due to the differences among their chemical structures and natures. Especially, the nanofiltration of reactive dye solutions showed higher permeate flux, lower total dissolved solid rejection efficiency and higher organics rejection efficiency than those of disperse dye solutions.

  • PDF

Rejection property of geosmin and 2-Methylisoborneol (MIB) with high concentration level at multi stage nanofiltration (NF) membrane system (다단 나노여과 공정에서 고농도 geosmin 및 2-Methylisoborneol (MIB)의 제거특성)

  • Yu, Young-Beom;Choi, Yang Hun;Kim, Dong Jin;Kwon, Soon-Buhm;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.397-409
    • /
    • 2014
  • Algal problem in drinking water treatment is being gradually increased by causing deterioration of water supplies therefore, especially taste and odor compounds such as geosmin and 2-MIB occur mainly aesthetic problem by its unpleasant effects resulting in the subsequent onset of complaints from drinking water consumer. Recently, geosmin and 2-MIB are detected frequently at abnormally high concentration level. However, conventional water treatment without advanced water treatment processes such as adsorption and oxidation process, cannot remove these two compounds efficiently. Moreover, it is known that the advanced treatment processes i.e. adsorption and oxidation have also several limits to the removal of geosmin and 2-MIB. Therefore, the purpose of this study was not only to evaluate full scale nanofiltration membrane system with $300m^3/day$ of permeate capacity and 90% of recovery on the removal of geosmin and 2-MIB in spiked natural raw water sources at high feed concentration with a range of approximately 500 to 2,500 ng/L, but also to observe rejection property of the compounds within multi stage NF membrane system. Rejection rate of geosmin and 2-MIB by NF membrane process was 96% that is 4% of passage regardless of the feed water concentration which indicates NF membrane system with an operational values suggested in this research can be employed in drinking water treatment plant to control geosmin and 2-MIB of high concentration. But, according to results of regression analysis in this study it is recommended that feed water concentration of geosmin and 2-MIB would not exceed 220 and 300 ng/L respectively which is not to be perceived in drinking tap water. Also it suggests that the removal rate might be depended on an operating conditions such as feed water characteristics and membrane flux. When each stage of NF membrane system was evaluated relatively higher removal rate was observed at the conditions that is lower flux, higher DOC and TDS, i.e., $2^{nd}$ stage NF membrane systems, possibly due to an interaction mechanisms between compounds and cake layer on the membrane surfaces.

Preparation and Characterization of Nanofiltration Membrane for Recycling Alcoholic Organic Solvent (알코올성 유기용매 재활용을 위한 나노여과막의 제조와 특성평가)

  • Kim, Seong Heon;Im, Kwang Seop;Kim, Ji Hyeon;Koh, Hyung Chul;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.228-240
    • /
    • 2021
  • The organic solvent robust polybenzimidazole (PBI) membranes were prepared as organic solvent nanofiltration (OSN) membrane for the recycling of alcoholic solvents using non-solvent induced phase separation with different dope solution concentration and coagulant composition of water/ethanol mixtures to control the membrane morphology and permeation performance. Investigation on crosslinking of polybenzimidazole indicated that the membrane crosslinked with dibromoxylene (DBX) had enough mechanical strength and solvent resistance to be applied as a OSN membranes. The crosslinked PBI membrane prepared by more than 20wt% dope concentration coagulated in water showed a rejection of > 90% to Congo Red (MW of 696.66 g/mol) while pure ethanol permeances was more than 22.5 LMH/bar at 5 bar. Investigation on coagulant composition indicated that ethanol permeance through crosslinked PBI OSN membrane increased with increasing of ethanol concentration in water/ethanol mixture coagulants.

New CPS-PPEES blend membranes for CaCl2 and NaCl rejection

  • Chitrakar, Hegde;Arun, M. Isloor;Mahesh, Padaki;Ahmad, Fauzi Ismail;Lau, W.J.
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.25-34
    • /
    • 2012
  • Carboxylated polysulfone (CPS), poly (1,4-phenylene ether ethersulfone) (PPEES), membranes were prepared and used for the separation of NaCl and $CaCl_2$, in efficient way with less energy consumption. In this work, nanofiltration and reverse osmosis membranes were employed to the salt rejection behavior of the different salt solutions. The influence of applied pressure (1-12 bar), on the membrane performance was assessed. In CM series of membranes, $CM_1$ showed maximum of 97% water uptake and 36% water swelling, whereas, $CM_4$ showed 75% water uptake and 28% water swelling. In RCM series, $RCM_1$ showed 85% water uptake and 32% water swelling whereas, in $RCM_4$ it was 68% for water uptake and 20% for water swelling. Conclusively reverse osmosis membranes gave better rejection whereas nanofiltration membrane showed enhanced flux. CM1 showed 58% of rejection with 12 L/($m^2$ h) flux and $RCM_1$ showed 55% of rejection with 15 L/($m^2$ h) flux for 0.1 wt.% NaCl solution. Whereas, in 0.1 wt.% $CaCl_2$ solution, membrane $CM_1$ showed 78% of rejection with 12 L/($m^2$ h) flux and $RCM_1$ showed 63% rejection with flux of 9 L/($m^2$ h).

Recycling of Acidic Etching Waste Solution Containing Heavy Metals by Nanofiltration (I): Evaluation of Acid Stability of Commercial Nanofiltration Membranes (나노여과에 의한 중금속 함유 산성 폐에칭액의 재생(I): 상용 나노여과 막의 산 안정성 평가)

  • Youm, Kyung-Ho;Shin, Hwa-Sup;Jin, Cheon-Deok
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.317-323
    • /
    • 2009
  • In this study the nanofiltration (NF) membrane treatment of a nitric acid waste solutions containing $Pb^{+2}$ heavy metal ion discharging from the etching processes of an electronics and semiconductors industry has been studied for the purpose of recycling of nitric acid etching solutions. Three kinds of NF membranes (General Electric Co. Duraslick NF-4040 membrane, Dow Co. Filmtec LP-4040 membrane and Koch Co. SelRO MPS-34 4040 membrane) were tested for their separation efficiency (total rejection) of $Pb^{+2}$ ion and membrane stability in nitric acid solution. NF experiments were carried out with a dead-end membrane filtration laboratory system. The membrane permeate flux was increased with the increasing storage time in nitric acid solution and lowering pH of acid solution because of the enhancing of NF membrane damage by nitric acid. The membrane stability in nitric acid solution was more superior in the order of Filmtec LP-4040 < Duraslick NF-4040 < SelRO MPS-34 4040 membrane. The total rejection of Pb+2 ion was decreased with the increasing storage time in nitric acid solution and lowering the pH of acid solution. The total rejection of $Pb^{+2}$ ion after 4 months NF treatment was decreased from 95% initial value to 20% in the case of Duraslick NF-4040 membrane, from 85% initial value to 65% in the case of SelRO MPS-34 4040 membrane and from 90% initial value to 10% in the case of Filmtec LP-4040 membrane. These results showed that SelRO MPS-34 4040 NF membrane was more suitable for the treatment of an acidic etching waste solutions containing heavy metal ions.

Wastewater Recycling from Electroless Printed Circuit Board Plating Process Using Membranes (분리막을 이용한 무전해 PCB 도금 폐수의 재활용)

  • 이동훈;김래현;정건용
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2003
  • Membrane process was investigated to recover process water and valuable gold from washing water of electroless PCB plating processes. The filtration experiments were carried out using not only a RO membrane test cell to determine suitable membrane for washing water but also spiral wound membrane modules of nanofiltration and reverse osmosis for scale-up. At first, RO-TL(tap water, low pressure), RO-BL(brackish water, low pressure) and RO-normal(for water purifier) sheet membranes made by Saehan Co. were tested, and the performance of RO-TL membrane showed most suitable f3r recovery of soft etching, catalyst and Ni washing waters. As a result of RO test cell, the experiments for scale-up were carried out using RO-TL modules far water purifier at 7bar and $25^{\circ}C $The permeate flux fur Au washing water was about 30 LMH, but Au rejection was less than 80%. The permeate fluxes for Pd, Ni and soft etching washing water were about 22, 17 and 10 LMH, respectively. The Pd, Ni and Cu rejections showed more than 85, 97 and 98% respectively. The nanofiltration module for water purifier was introduced to recover Au selectively from Au, Ni and Cu ions in Au washing water. Most of Ni and Cu ions in the feed washing water were removed, and only Au ion was existed 81.9% in the permeate. Furthermore, Au ion in the permeate was concentrated and recovered by RO-TL membrane module. Finally, Au was also able to recover effectively by using 4 inch diameter spiral wound modules of NF and RO-TL membranes, in series.