• Title/Summary/Keyword: nanocrystalline alloys

Search Result 90, Processing Time 0.025 seconds

A Study of Structures and Magnetic Properties of Electrodeposited Fe-45 wt%Ni-P Alloys (전착법에 의한 Fe-45 wt%Ni-P 합금의 조직과 자기적 성질에 관한 연구)

  • 구승현;이흥렬;김동환;황태진;임태홍
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.6
    • /
    • pp.461-465
    • /
    • 2003
  • The microstructures and magnetic properties of electrodeposited Fe-45 wt%Ni-P alloys have been investigated. The structures of electrodeposited Fe-45 wt%Ni alloy was FCC i.e. ${\gamma}$ phase and the size of crystallite was 10 nm. The structure of electrodeposited Fe-45 wt%Ni-1 wt%P alloy showed ${\gamma}$ phase and 7 nm sized nanocrystalline. The electrodeposited Fe-45 wt%Ni-P alloys containing 2∼3 wt% of P exhibited ${\gamma}$$\alpha$ dual phases. The electrodeposited Fe-45 wt%Ni-P alloys above 3.5 wt% showed an amorphous structure. P in the alloys acted grain refining and phase changing element. The resistivity of the electrodeposited alloys increased with P contents. Effective permeability at high frequency (above 1 MHz) increased with P contents up to 2 wt% and this was ascribed to the easier magnetization rotation owing to the reduction of eddy current. Effective permeability decreased with P contents above 3 wt% and this was ascribed to the transformation of the ferromagnetism of Fe-45 wt%Ni alloy gradually into paramagnetism with the introduction of P into the electrodeposited alloy matrix.

Influence of Nd Content on Magnetic Properties of Nanocrystalline $\alpha$-(Fe, Co)-Based Nd-(Fe, Co)-B-Nb-Cu Alloys ($\alpha$-(Fe, Co)기 Nd-(Fe, Co)-B-Nb-Cu 초미세결정립합금의 자기특성에 미치는 Nd의 영향)

  • 조덕호;조용수;김택기;송민석;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.154-158
    • /
    • 1999
  • Magnetic properties and microstructure of nanocrystalline $\alpha$-(Fe, Co)-based Nd-(Fe, Co)-B-Nb-Cu alloys have been investigated. $Nd_x(Fe_{0.9}Co_{0.1})_{90-x}B_6Nb_3Cu_1$(x=2, 3, 4, 5, 6) alloys prepared by rapid solidification process show amorphous phase except the one with x=2. By a proper annealing, the amorphous in the alloy is changed to a nanocrystalline phase. It is confirmed that the nanocrystalline alloys are composed of $\alpha$-(Fe, Co) and $Nd_2(Fe, Co)_{14}B_1$ phase. The optimally annealed $Nd_3(Fe_{0.9}Co_{0.1})_87B_6Nb_3Cu_1$ alloy shows the highest remanence of 1.55 T. The coercivity increases with the increase of Nd content The maximum coercivity of 4.6 kOe is obtained from an optimally annealed $Nd_6(Fe_{0.9}Co_{0.1})_84B_6Nb_3Cu_1$ alloy, resulting in the maximum energy product of 10.6 MGOe.

  • PDF

EFFECT OF FLASH ANNEALING ON MAGNETIC PROPERTIES OF Fe-BASED NANOCRYSTALLINE ALLOYS

  • Yu, Xiaojun;Quan, Baiyun;Sun, Guiqin;Narita, Kenji
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.507-510
    • /
    • 1995
  • A heat-treatment method of pre-annealing and then flash annealing(FA) has been used to improve the soft magnetic properties of nanocrystalline $Fe_{76}CuSi_{13}B_{10}$ and $Fe_{74}CuNb_{3}Si_{12}B_{10}$ alloys. Outstanding magnetic properties of nanocrystalline $Fe_{74}CuNb_{3}Si_{12}B_{10}$ alloy were attained by flash-annealing in air after annealed at $500^{\circ}C$ for 0.5hr below the crystallization temperature. The same results were obtained for $Fe_{74}CuSi_{13}B_{10}$ alloy. The measurment of relief of stress and X-ray diffraction were used to analyze the effect of flashannealing.

  • PDF

INFLUENCE OF CARBON CONTENT ON AUSTENITE STABILITY AND STRAIN-INDUCED TRANSFORMATION OF NANOCRYSTALLINE FeNiC ALLOY BY SPARK PLASMA SINTERING

  • SEUNG-JIN OH;BYOUNG-CHEOL KIM;MAN-CHUL SUH;IN-JIN SHON;SEOK-JAE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.863-867
    • /
    • 2019
  • The effects of carbon content on the austenite stability and strain-induced transformation of nanocrystalline Fe-11% Ni alloys were investigated using X-ray analysis and mechanical tests. The nanocrystalline FeNiC alloy samples were rapidly fabricated using spark plasma sintering because of the extremely short densification time, which not only helped attain the theoretical density value but also prevented grain growth. The increased austenite stability resulted from nanosized crystallites in the sintered alloys. Increasing compressive deformation increased the volume fraction of strain-induced martensite from austenite decomposition. The kinetics of the strain-induced martensite formation were evaluated using an empirical equation considering the austenite stability factor. As the carbon content increased, the austenite stability was enhanced, contributing to not only a higher volume fraction of austenite after sintering, but also to the suppression of its strain-induced martensite transformation.

Effect of Iron Co-deposited Nickel on the Microstructures and Properties of Electroplated Nanocrystalline Nickel-iron Alloys (전착된 나노 결정질 니켈-철 합금의 미세구조 및 물성에 대한 철의 영향)

  • Byun Myung-Hwan;Cho Jin-Woo;Song Yo-Seung
    • Journal of Surface Science and Engineering
    • /
    • v.38 no.4
    • /
    • pp.156-162
    • /
    • 2005
  • Nickel-iron nanocrystalline alloys with different compositions and grain sizes were fabricated by electro-plating for MEMS devices. The iron content of the deposits was changed by varying the nickel/iron ion ratio in the electrolyte. X-ray diffraction (XRD) analysis was applied for measuring the strength of the texture and grain size of the deposits. The nickel/iron atom ratio of the deposits was analyzed by EDS. The hardness of the alloys was evaluated by Vickers hardness indenter. The internal stress of the deposits was measured by Thin Film Stress Measurement using Stoney's formula. Surface morphology and roughness were investigated by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The results of this study revealed that at a grain size of approximately $17\~24$nm the hardness, internal stress and roughness depend strongly on the iron content. With increasing the iron content, the hardness and internal stress of the deposits increased. An excellent correlation between the increase in the internal stress and the loss of (200) texture was found.

Effect of Mo Addition on the Austenite Stability of Nanocrystalline Fe-7wt.%Mn Alloy Fabricated by Spark Plasma Sintering (방전 플라즈마 소결로 제조된 나노결정 Fe-7wt.%Mn 합금의 오스테나이트 안정성에 미치는 Mo 첨가 효과)

  • Woochul, Shin;Seung Bae, Son;Jae-Gil, Jung;Seok-Jae, Lee
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.517-522
    • /
    • 2022
  • We investigate the austenite stability in nanocrystalline Fe-7%Mn-X%Mo (X = 0, 1, and 2) alloys fabricated by spark plasma sintering. Mo is known as a ferrite stabilizing element, whereas Mn is an austenite stabilizing element, and many studies have focused on the effect of Mn addition on austenite stability. Herein, the volume fraction of austenite in nanocrystalline Fe-7%Mn alloys with different Mo contents is measured using X-ray diffraction. Using a disk compressive test, austenite in Fe-Mn-Mo alloys is confirmed to transform into strain-induced martensite during plastic deformation by a disk d. The variation in austenite stability in response to the addition of Mo is quantitatively evaluated by comparing the k-parameters of the kinetic equation for the strain-induced martensite transformation.

THE MAGNETOSTRICTIVE PROPERTIES OF Dy-Fe-B ALLOYS WITH NANOCRYSTALLINE GRAIN STRUCTURE

  • Lim, S.H.;Kim, S.R.;Noh, T.H.;Lee, S.R.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.795-799
    • /
    • 1995
  • The magnetostriction versus field (${\lambda}-H$) curves for the melt-spun ribbons of $Dy_{x}{(Fe_{1-y}B_{y})}_{1-x}$ (x=0.2, 0.25, 0.3; y=0, 0.05, 0.1, 0.15, 0.2) alloys are measured systematically at various wheel speeds ranging from 10 to 50 m/sec. The ${\lambda}-H$ curves in most cases vary sensitively with the wheel speed and, in the wheel speed range where no amorphous phase is formed, the magnetic softness improves rather continuously with the wheel speed. This result is considered to be due to the reduced grain size with increasing wheel speed, which was confirmed by X-ray diffraction and transmission electron microscopy. In particular, homogeneous and ultrafine grains with size of about 10 nm are formed even in the as-spun state when the $Dy_{0.3}{(Fe_{1-y}B_{y})}_{0.7}$ alloys are quenched at the wheel speed of 30 m/sec (for the alloy with y=0.2) or 40 m/sec (for the alloys with $y{\leq}0.15$) and the ribbons having the nanocrystalline grain structure exhibit good magnetostrictive characteristics.

  • PDF