• Title/Summary/Keyword: nanocluster

Search Result 29, Processing Time 0.022 seconds

Synthesis of CdS Quantum Dots Using Zeolite-on-Glass and Analysis of Their Properties (Zeolite-on-glass를 이용한 CdS 양자점 합성과 특성 분석)

  • Lee, Eun-Sun;Kim, Jun-Hyung;Ha, Kwang;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.175-176
    • /
    • 2006
  • Zeolite의 이온교환 특성과 균일한 기공과 결정 모양을 가지는 구조적 특성을 이용하여 CdS 양자점 클러스터를 합성하였다. 합성된 CdS-Zeolite는 구조적으로 안정된 나노 크기의 새로운 반도체 물질이 된다. 또한 Zeolite 결정들이 유리판에 밀집하여 배열되는 경향을 이용하므로 CdS 양자점이 합성된 제올라이트를 기판에 정렬, 박막을 형성한다. CdS-Zeolite 결정 박막은 SEM 측정을 통해 구조와 표면 정렬 상태를 알고, photoluminescence 측정으로 양자점 특성의 발광 파장을 가짐을 알 수 있다.

  • PDF

Ni Foam-Supported Ni Nanoclusters for Enhanced Electrocatalytic Oxygen Evolution Reaction

  • Hoeun Seong;Jinhee Kim;Kiyoung Chang;Hyun-woo Kim;Woojun Choi;Dongil Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.243-251
    • /
    • 2023
  • Developing oxygen evolution reaction (OER) electrocatalysts is essential to accomplish viable CO2 and water electrolysis. Herein, we report the fabrication and OER performance of Ni-foam (NF)-immobilized Ni6 nanoclusters (NCs) (Ni6/NF) prepared by a dip-coating process. The Ni6/NF electrode exhibited a high current density of 500 mA/cm2 for the OER at an overpotential as low as 0.39 V. Ni6/NF exhibited high durability in an alkaline solution without corrosion. Electrokinetic studies revealed that OER can be easily initiated on Ni6 NC with fast electron-transfer rates. Finally, we demonstrated stable CO2-to-CO electroreduction using an NC-based zero-gap CO2 electrolyzer operated at a current density of 100 mA/cm2 and a full-cell potential of 2.0 V for 12 h.

Effects of Growth Conditions on Structural and Optical Properties of ZnS Nanoclusters (용액성장법의 성장조건이 ZnS 나노클러스터의 구조적, 광학적 특성에 미치는 영향)

  • 이상욱;이종원;조성룡;김선태;박인용;최용대
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.558-561
    • /
    • 2001
  • In this study, the ZnS nanosized thin films were grown by the solution growth technique (SGT), and their structural and optical properties were examined. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). With decreasing growth temperature and decreasing concentration of precursor solution, the surface morphology of film was found to be improved. In particular, this is the first time that the surface morphology dependence of ZnS film grown by SGT on the ammonia concentration is reported. The energy band gaps of samples were shown to vary from 3.69 eV to 3.91 eV, demonstrating that the quantum size effect of SGT grown ZnS is remarkable. Photoluminescence (PL) peaks were observed at the positions corresponding to the lower energy than that to energy band gap, illustrating that the surface states were induced by the ultra-fineness of grains in ZnS films.

  • PDF

Tunable Electrical Properties of Aligned Single-Walled Carbon Nanotube Network-based Devices: Metallization and Chemical Sensor Applications

  • Kim, Young Lae;Hahm, Myung Gwan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.535-538
    • /
    • 2017
  • Here we report the tunable electrical properties and chemical sensor of single-walled carbon nanotubes (SWCNTs) network-based devices with a functionalization technique. Formation of highly aligned SWCNT structures is made on $SiO_2/Si$ substrates using a template-based fluidic assembly process. We present a Platinum (Pt)-nanocluster decoration technique that reduces the resistivity of SWCNT network-based devices. This indicates the conversion of the semiconducting SWCNTs into metallic ones. In addition, we present the Hydrogen Sulfide ($H_2S$) gas detection by a redox reaction based on SWCNT networks functionalized with 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) as a catalyst. We summarize current changes of devices resulting from the redox reactions in the presence of $H_2S$. The semiconducting (s)-SWCNT device functionalized with TEMPO shows high gas response of 420% at 60% humidity level compared to 140% gas response without TEMPO functionalization, which is about 3 times higher than bare s-SWCNT sensor at the same RH. These results reflect promising perspectives for real-time monitoring of $H_2S$ gases with high gas response and low power consumption.

Molecular Dynamics Simulations of the Diffusion of Bimetallic Nanoclusters Supported on Graphite (분자동역학을 이용한 흑연 위에서의 2종 합금 나노입자의 확산 거동 연구)

  • Park, Joon Woo;Lee, Ju Seong;Min, Chan Ho;Lee, Hyun Seok;Ryu, Ji Hoon;Seo, Dong Hwa;Lee, Hyuck Mo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.461-465
    • /
    • 2009
  • We study the diffusion of Ag based bimetallic nanoclusters supported on graphite. Using a molecular dynamics simulation, we reveal that the Ag clusters show rapid diffusion because of their hexagonal bottom layer. In order to decrease the rate of diffusion, we added Pt and Ni to distort the structure of the alloy cluster (i.e., the alloying method). We expected Pt to provide a stronger force on Ag atoms, and Ni to shorten the bond length and thereby change the structure of Ag cluster. However, the attempt was unsuccessful, because Pt and Ni atoms formed cores inside the Ag clusters. We therefore designed a collision system where large Ag clusters collide with small Pt or Ni clusters. Upon collision with Pt clusters, the diffusion showed little change, because Pt atoms are substituted at the Ag atomic site and form a perfectly ordered structure. The collision with Ni, however, deforms the bottom layer as well as the overall cluster structure and decreases diffusion. This outcome appoints toward the possibility of further application to the manufacture of durable nanocatalysts.

Microstructures and Thermal Properties of Polycaprolactone/Epoxy Resin/SiO2 Hybrids

  • He, Lihua;Liu, Pinggui;Ding, Heyan
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.32-38
    • /
    • 2006
  • A series of organic-inorganic hybrids, PCL/EP/$SiO_2$, involving epoxy resin and triethoxysilane-terminated polycaprolactone elastomer (PCL-TESi) were prepared via polymerization of diglycidyl ether of bisphenol A (DGEBA) with amine curing agent KB-2 and sol-gel process of PCL-TESi. The curing reactions were started from the initially homogeneous mixture of DGEBA, KB-2 and the PCL-TESi. The organicinorganic hybrids containing up to 4.95% (wt) of $SiO_2$ were obtained and characterized by FT-IR, transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). It was experimentally shown that the swelling property in toluene, morphologies and thermal properties of the resulting hybrids were quite dependent on the contents of $SiO_2$. The crosslink network density decreases with increasing of the PCL-TESi. And in TEM, the phase separated morphology of these hybrids was found, which resulted from the coagulation of Si-O-Si networks resulting from $-Si(OC_2H_5)_3$ of PCL-TESi self-curing by hydrolytic silanol condensation, with the advancement of the curing reaction in the modified epoxy resin systems. Meanwhile, the change of the $SiO_2$ content made the morphologies changed from aggregated particles of Si-O-Si in the hybrid to nanocluster of interconnected Si-O-Si particles, then to aggregated Si-O-Si dispersing in the continuous cured epoxy phase again, and last to co-continuous interpenetrating network. The glass transition behavior of the hybrid material was cooperative motion of large chain segments, which were hindered by the inorganic Si-O-Si network. And in TG analysis, the characteristic temperature at 5% of weight loss was evidently increased from $120.5^{\circ}C$ of pure cured epoxy to $277.6^{\circ}C$ of 3.84% (wt) of $SiO_2$ modified epoxy due to the existence of Si-O-Si when PCL-TESi was added in the hybrid.

  • PDF

Effects of Cu and Ag Addition on Nanocluster Formation Behavior in Al-Mg-Si Alloys

  • Kim, Jae-Hwang;Tezuka, Hiroyasu;Kobayashi, Equo;Sato, Tatsuo
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.329-334
    • /
    • 2012
  • Two types of nanoclusters, termed Cluster (1) and Cluster (2) here, both play an important role in the age-hardening behavior in Al-Mg-Si alloys. Small amounts of additions of Cu and Ag affect the formation of nanoclusters. Two exothermic peaks were clearly detected in differential scanning calorimetry(DSC) curves by means of peak separation by the Gaussian method in the base, Cu-added, Ag-added and Cu-Ag-added Al-Mg-Si alloys. The formation of nanoclusters in the initial stage of natural aging was suppressed in the Ag-added and Cu-Ag-added alloys, while the formation of nanoclusters was enhanced at an aging time longer than 259.2 ks(3 days) of natural aging with the addition Cu and Ag. The formation of nanoclusters while aging at $100^{\circ}C$ was accelerated in the Cu-added, Ag-added and Cu-Ag-added alloys due to the attractive interaction between the Cu and Ag atoms and the Mg atoms. The influence of additions of Cu and Ag on the clustering behavior during low-temperature aging was well characterized based on the interaction energies among solute atoms and on vacancies derived from the first-principle calculation of the full-potential Korrinaga-Kohn-Rostoker(FPKKR)-Green function method. The effects of low Cu and Ag additions on the formation of nanoclusters were also discussed based on the age-hardening phenomena.

The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption

  • Jeong-Su Park;Ik-Joo Chung;Hye-Ran Kim;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.29.1-29.23
    • /
    • 2023
  • Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.

Growth of ZnS nanocluster thin films by growth technique and investigation of structural and optical properties (용액성장법(Solution growth technique)에 의한 ZnS nano 입자 박막성장 및 구조적, 광학적 특성)

  • 이종원;임상철;곽만석;박인용;김선태;최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.199-204
    • /
    • 2000
  • In this study, the ZnS nanosized thin films that could be used for fabrication of blue light-emitting diodes, electro-optic modulators, and n-window layers of solar cells were grown by the solution growth technique (SGT), and their structural and optical properties were examined. Based on these results, the quantum size effects of ZnS were systematically investigated. Governing factors related to the growth condition were the concentration of precursor solution, growth temperature, concentration of aq. ammonia, and growth duration. X-ray diffraction patterns showed that the ZnS thin film obtained in this study had the cubic structure ($\beta$-ZnS). When the growth temperature was $75^{\circ}C$, the surface morphology and the grain size uniformity were the best. The energy band gaps of samples were determined from the optical transmittance valued, and were shown to vary from 3.69 eV to 3.91 eV. These values were substantially higher than 3.65 eV of bulk ZnS, demonstrating that the quantum size effect of SGT grown ZnS is remarkable. Photoluminescence (PL) peaks were observed at the positions corresponding to the lower energy than that to energy band gap, illustrating that the surface states were induced by the ultra-fineness of grains in ZnS films. Particularly, for the first time, it is reported for the SGT grown ZnS that the PL peaks were shifted depending on the grain size.

  • PDF