• Title/Summary/Keyword: nanobiosensors

Search Result 9, Processing Time 0.022 seconds

Fabrication of Wafer-Scale Anodized Aluminum oxide(AAO)-Based capacitive biosensor

  • Kim, Bongjun;Oh, Jeseung;Yoo, Kyunghwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.372.2-372.2
    • /
    • 2016
  • Various nanobiosensors have been developed and extensively investigated. For their practical applications, however, the reproducibility and uniformity should be good enough and the mass-production should be possible. To fabricate anodized aluminium oxide (AAO)-based nanobiosesnor on wafer scale, we have designed and constructed a wafer-scale anodizing system. $1{\mu}m$-thick-aluminum is deposited on 4 inch SiO2/Si substrate and then anodized, resulting in uniform nanopores with an average pore diameter of about 65 nm. Furthermore, most AAO sensors constructed on this wafer provide capacitance values of 30 nF ~ 60 nF in PBS, demonstrating their uniformity.

  • PDF

The use of nanotechnology in the agriculture

  • Cicek, Semra;Nadaroglu, Hayrunnisa
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.207-223
    • /
    • 2015
  • Nanotechnology is considered the most important technological advancement in recent years, and it is utilized in all industries due to its potential applications. Almost all of the industries (food, agriculture, medicine, automotive, information and communication technologies, energy, textile, construction, etc.) reorganize their future in the light of nanotechnological developments. As the most important source of income of countries, the agriculture industry increases the use of nanotechnology products gradually as a solution to the problems encountered. Reducing the use of agricultural inputs (pesticides, herbicides, fertilizers, etc.) by increasing their efficiency utilizing nano-carriers, detecting the environmental conditions and development of the crops in the field simultaneously by making use of nanosensors, reducing the sample volume and the amount of analyte used thanks to nanoarrays, effective treatment of water resources through nano-filters, accelerating the development of crops by using nanoparticles are the prominent nanotechnological applications in the agriculture industry. This review presents information on the benefits of the recent developments in nanotechnology applications in the agriculture industry.

Systematic Study of Fluorescein-Functionalized Macrophotoinitiators for Colorimetric Bioassays

  • Lee, Jeong-Gyu;Han, Gyeong-Yeop;Go, Sang-Won;Sikes, Hadley D.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.263.2-263.2
    • /
    • 2013
  • We report a systematic investigation of a set of macrophotoinitiators for use in polymerization-based signal amplification. To test the dependence of photopolymerization responses on the number of photoinitiators localized per molecular recognition event, we gradually increased the number of photoinitiator molecules coupled to a scaffold macromolecule. Macrophotoinitiators constructed with an average of 7 to 168 photoinitiators per polymer with the goals of quantifying the relationship between the number of initiators per binding event and the degree of amplified colorimetric readout. To evaluate the capacity of the macrophotoinitiators to detect molecular recognition, neutravidin was coupled to these molecules to recognize biotin-labeled DNA immobilized on biochip test surfaces. Fluorescein macroinitiators are found to be useful in detecting molecular recognition above a threshold of initiators per polymer. Above this threshold, increasing the number of initiators per macroinitiator resulted in increased signal strength.

  • PDF

Nanotechnology in Biodevices

  • Choi, Jeong-Woo;Oh, Byung-Keun;Kim, Young-Kee;Min, Jun-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.5-14
    • /
    • 2007
  • Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer. The technology has been applied to biodevices such as bioelectronics and biochips to improve their performances. Nanoparticles, such as gold (Au) nanoparticles, are the most widely used of the various other nanotechnologies for manipulation at the nanoscale as well as nanobiosensors. The immobilization of biomolecules is playing an increasingly important role in the development of biodevices with high performance. Nanopatteming technology, which is able to increase the density of chip arrays, offers several advantages, including cost lowering, simultaneous multicomponent detection, and the efficiency increase of biochemical reactions. A microftuidic system incorporated with control of nanoliter of fluids is also one of the main applications of nanotechnologies. This can be widely utilized in the various fields because it can reduce detection time due to tiny amounts of fluids, increase signal-to-noise ratio by nanoparticles in channel, and detect multi-targets simultaneously in one chamber. This article reviews nanotechnologies such as the application of nanoparticles for the detection of biomolecules, the immobilization of biomolecules at nanoscale, nanopatterning technologies, and the microfluidic system for molecular diagnosis.

Reduced Graphene Oxide Field Effect Transistor for Detection of H+ Ions and Their Bio-sensing Application

  • Sohn, Il-Yung;Kim, Duck-Jin;Yoon, Ok-Ja;Tien, N.T.;Trung, T.Q.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.195-195
    • /
    • 2012
  • Recently, graphene based solution-gated field-effect transistors (SGFETs) have been received a great attention in biochemical sensing applications. Graphene and reduced graphene oxide (RGO) possess various advantages such as high sensitivity, low detection limit, label-free electrical detection, and ease of fabrication due to their 2D nature and large sensing area compared to 1D nanomaterials- based nanobiosensors. Therefore, graphene or RGO -based SGFET is a good potential candidate for sensitive detection of protons (H+ ions) which can be applied as the transducer in various enzymatic or cell-based biosensing applications. However, reports on detection of H+ ions using graphene or RGO based SGFETs have been still limited. According to recent reports, clean graphene grown by CVD or exfoliation is electrochemically insensitive to changes of H+ concentration in solution because its surface does not have terminal functional groups that can sense the chemical potential change induced by varying surface charges of H+ on CVD graphene surface. In this work, we used RGO -SGFETs having oxygen-containing functional groups such as hydroxyl (OH) groups that effectively interact with H+ ions for expectation of increasing pH sensitivity. Additionally, we also investigate RGO based SGFETs for bio-sensing applications. Hydroloytic enzymes were introduced for sensing of biomolecular interaction on the surface of RGO -SGFET in which enzyme and substrate are acetylcholinesterase (AchE) and acetylcholine (Ach), respectively. The increase in H+ generated through enzymatic reaction of hydrolysis of Ach by AchE immobilized on RGO channel in SGFET could be monitored by the change in the drain-source current (Ids).

  • PDF