• Title/Summary/Keyword: nano-wire

Search Result 187, Processing Time 0.025 seconds

Formation of Aluminum Hydroxides by Hydrolysis of Nano and Micro Al Powders (나노 및 마이크로 알루미늄의 가수분해에 의한 알루미늄 수산화물의 형성)

  • Oh Young Hwa;Lee Geunhee;Park Joong Hark;Rhee Chang Kyu;Kim Whung Whoe;Kim Do Hyang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2005
  • A formation of aluminum hydroxide by hydrolysis of nano and micro aluminum powder has been studied. The nano aluminum powder of 80 to 100 nm in diameter was fabricated by a pulsed wire evaporation (PWE) method. The micro powder was commercial product with more than $10\;{\mu}m$ in diameter. The hydroxide type and morphology depending on size of the aluminum powder were examined by several analyses such as XRD, TEM, and BET. The hydrolysis procedure of micro aluminum powder was different from that of nano aluminum powder. The nano aluminum powder after immersing in the water was transformed rapidly to a nano fibrous boehmite, accompanying with a remarkable temperature increase, and then further transformed slowly to a stable bayerite. However, the micro powder was changed to the stable bayerite slowly and directly. The formation of fibrous aluminum hydroxide from nano aluminum powder might be due to the fine cracks which were formed by hydrogen gas pressure on the surface hydroxide layer during hydrolysis. The nano powder with large specific surface area and small size reacted more actively and faster than the micro powder, and transformed to meta-stable hydroxide in relatively short reaction time. Therefore, the formation of fibrous boehmite is special characteristic of hydrolysis of nano aluminum powder.

The Fabrication of the Single Crystal Wire from Cu Single Crystal Grown by the Czochralski Method and its Physical Properties (Czochralski법을 이용한 금속 단결정의 성장과 구조적, 전기적 성질에 관한 연구)

  • Park, Jeung-Hun;Cha, Su-Young;Park, Sang-Eon;Kim, Sung-Kyu;Cho, Chae-Ryong;Park, Hyuk-K.;Kim, Hyung-Chan;Jeong, Myung-Hwa;Jeong, Se-Young
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • It is well known that the general metals have a lot of grain boundaries. The grain boundaries play a negative role to increase the resistivity and to decrease the conductivity. The small resistivity and the large conductivity have been a goal of the material scientists, and no signal noise, perfect signal transfer, and the realization of the real sound are the dream of electronic engineers and audio manias. Generally, oxygen free copper (OFC) and Ohno continuous casting (OCC) copper cables have been used for the purpose of the precise signal transfer and low noise. However they still include a lot of grain boundaries. In our study, we have grown the single crystal by the Czochralski method and succeeded to produce single crystal wires from the crystal in the dimension of $0.5{\times}0.5{\times}2500mm$. The produced wire still possesses very good single crystal properties. We observed the structure of the wire, and measured the resistance and impedance. Glow Discharge Spectrometer (GDS) was used for analyzing the compositions of copper single crystals and commercial copper. Current-Voltage curve, resistance, total harmonic distortion and speaker frequency response were measured for comparing electrical and acoustic properties of two samples.

Electrically Driven Quantum Dot/wire/well Hybrid Light-emitting Diodes via GaN Nano-sized Pyramid Structure

  • Go, Yeong-Ho;Kim, Je-Hyeong;Kim, Ryeo-Hwa;Go, Seok-Min;Gwon, Bong-Jun;Kim, Ju-Seong;Kim, Taek;Jo, Yong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.47-47
    • /
    • 2011
  • There have been numerous efforts to enhance the efficiency of light-emitting diodes (LEDs) by using low dimensional structures such as quantum dots (QDs), wire (QWRs), and wells (QWs). We demonstrate QD/QWR/QW hybrid structured LEDs by using nano-scaled pyramid structures of GaN with ~260 nm height. Photoluminescence (PL) showed three multi-peak spectra centered at around 535 nm, 600 nm, 665 nm for QWs, QWRs, and QDs, respectively. The QD emission survived at room temperature due to carrier localization, whereas the QW emission diminished from 10 K to 300 K. We confirmed that hybrid LEDs had zero-, one-, and two-dimensional behavior from a temperature-dependent time-resolved PL study. The radiative lifetime of the QDs was nearly constant over the temperature, while that of the QWs increased with increasing temperature, due to low dimensional behavior. Cathodoluminescence revealed spatial distributions of InGaN QDs, QWRs, and QWs on the vertices, edges, and sidewalls, respectively. We investigated the blue-shifted electroluminescence with increasing current due to the band-filling effect. The hybrid LEDs provided broad-band spectra with high internal quantum efficiency, and color-tunability for visible light-emitting sources.

  • PDF

A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 광 포획 개선을 위한 Ag Nano-Dots 및 질화막 적용 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.12-17
    • /
    • 2019
  • In this study, the Ag nano-dots structure and silicon nitride film were applied to the textured wafer surface to improve the light trapping effect of mono-crystalline silicon solar cell. Ag nano-dots structure was formed by performing a heat treatment for 30 minutes at 650℃ after the deposition of 10nm Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The silicon nitride film was deposited by a Hot-wire chemical vapor deposition. The effect of light trapping was compared and analyzed through light reflectance measurements. Experimental results showed that the reflectivity increased by 0.5 ~ 1% under all nitride thickness conditions when Ag nano-dots structure was formed before nitride film deposition. In addition, when the Ag nano-dots structure is formed after deposition of the silicon nitride film, the reflectance is increased in the nitride film condition of 70 nm or more. When the HF treatment was performed for 60 seconds to improve the Ag nano-dot structure, the overall reflectance was improved, and the reflectance was 0.15% lower than that of the silicon nitride film-only sample at 90 nm silicon nitride film condition.

Studies on Application of Spray of Nano-fibrillated Cellulose to Papermaking Process (분무방식에 의한 NFC(Nano-Fibrillated Cellulose)의 제지공정 적용 방안 탐색 연구)

  • Lee, Kwang Seob;Kim, Chang Geun;Lee, Jae Hoon;Lee, Tai Ju;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.5-12
    • /
    • 2015
  • In recent years, it had focused on the improvement of paper properties by addition of NFC (Nano-fibrillated Cellulose). Although the addition of NFC to wet-end of papermaking process could be suggested as a new solution to improve the strength properties of paper, it was not possible to avoid the bad drainage caused by the added NFC's chocking pores of wet web. Instead of the direct addition to wet-end, spraying of NFC to web in wire-section was tried in this study and evaluated by checking various paper properties including surface smoothness, tensile strength, folding endurance and stiffness. According to the increase of spraying amount of NFC, above mentioned paper properties were enhanced without excessive deterioration of drainage. Compared with direct introduction to wet-end, spraying could be regarded as a more proper method to enhance the surface smoothness and strength properties of paper.

Hot Imprinted Hierarchical Micro/Nano Structures on Aluminum Alloy Surfaces (고온 임프린팅을 통한 알루미늄합금 표면의 마이크로/나노 구조 성형 기술)

  • Moon, I.Y.;Lee, H.W.;Oh, Y.S.;Kim, S.J.;Kim, J.H.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.239-246
    • /
    • 2019
  • Various surface texturing techniques have been studied because of the effective applicability of micro or nano scale surface patterns. Particularly, the most promising types of patterns include the hierarchical patterns, which consists of micro/nano structures. Different processes such as MEMS, laser machining, micro cutting and micro grinding have been applied in the production of hierarchical patterns on various material surfaces. This study demonstrates the process of hot imprinting to induce the hierarchical patterns on the Al alloy surfaces. Wire electrical discharge machining (WEDM) process was used to imprint molds with micro scale sinusoidal pattern. In addition, the sinusoidal pattern with rough surface morphology was obtained as a result of the discharge craters. Consequently, the hierarchical patterns consisting of the sinusoidal pattern and the discharge craters were prepared on the imprinting mold surface. Hot imprinting process for the Al plates was conducted on the prepared mold, and the replication performance was analyzed. As a result, it was confirmed that the hierarchical patterns of the mold were effectively duplicated on the surface of Al plate.

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF

Measuring Convective Heat Transfer Coefficient of Nanofluids Considering Effect of Film Temperature Change over Heated Fine Wire (막온도 변화를 고려한 가는 열선주위 나노유체의 대류열전달계수 측정 실험)

  • Lee, Shinpyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.725-732
    • /
    • 2013
  • This study examined the convective heat transfer characteristics of nanofluids flowing over a heated fine wire. Convective heat transfer coefficients were measured for four different nano-engine-oil samples under three different temperature boundary conditions, i.e., both or either variation of wire and fluid temperature and constant film temperature. Experimental investigations that the increase in the convective heat transfer coefficients of nanofluids in the internal pipe flow often exceeded the increase in thermal conductivity were recently published; however, the current study did not confirm these results. Analyzing the behavior of the convective heat transfer coefficient under various temperature conditions was a useful tool to explain the relation between the thermal conductivity and the boundary layer thickness of nanofluids.

Synthesis and Characterization of Silver Nanofluid Using Pulsed Wire Evaporation Method in Liquid-Gas Mixture (액상/기상중 전기선 폭발법을 이용한 은 나노유체의 제조 및 특성평가에 관한 연구)

  • Kim, Chang-Kyu;Lee, Gyoung-Ja;Rhee, Chang-Kyu
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.468-472
    • /
    • 2009
  • The silver nanofluids were synthesized by the pulsed wire evaporation (PWE) method in a liquid-gas mixture. The size and microstructure of nanoparticles in the deionized water were investigated by a particle size analyzer (PSA), transmission electron microscope (TEM), and scanning electron microscope (SEM). Also, the synthesized nanofluids were investigated in order to assess the stability of dispersion of nanofluid by the zetapotential analyzer and dispersion stability analyzer. The results showed that the spherical silver nanoparticle formed in the deionized water and mean particle size was about 50 nm. Also, when explosion times were in the range of 20$\sim$200 times, the absolute value of zeta potential was less than -27 mV and the dispersion stability characteristic of low concentration silver nanofluid was better than the high concentration silver nanofluid by turbiscan.

Composite and Spark Plasma Sintering of the Atomized Fe Amorphous Powders and Wire-exploded Cu Nanopowder in Liquid (가스분무 Fe계 비정질 분말과 유체 내 전기선 폭발에 의한 나노 Cu 분말의 복합화와 방전플라즈마 소결)

  • Kim, Jin-Chun;Goo, Wang-Heo;Yoo, Joo-Sik
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.285-291
    • /
    • 2008
  • Fe based ($Fe_{68.2}C_{5.9}Si_{3.5}B_{6.7}P_{9.6}Cr_{2.1}Mo_{2.0}Al_{2.0}$) amorphous powder were produced by a gas atomization process, and then ductile Cu powder fabricated by the electric explosion of wire(EEW) were mixed in the liquid (methanol) consecutively. The Fe-based amorphous - nanometallic Cu composite powders were compacted by a spark plasma sintering (SPS) processes. The nano-sized Cu powders of ${\sim}\;nm$200 produced by EEW in the methanol were mixed and well coated with the atomized Fe amorphous powders through the simple drying process on the hot plate. The relative density of the compacts obtained by the SPS showed over 98% and its hardness was also found to reach over 1100 Hv.