• Title/Summary/Keyword: nano-structure powder

Search Result 188, Processing Time 0.028 seconds

The Effect of pH and temperature on the Morphology of Aluminum Hydroxides formed by Hydrolysis Reaction (알루미늄의 수화 반응시 pH와 온도에 따른 형상 변화)

  • 오영화;이근회;박중학;이창규;김흥회;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2004
  • A formation of aluminum hydroxide by hydrolysis reaction in the water has been studied by using nano aluminum powder fabricated by pulsed wire evaporation(PWE) method. The hydroxide type and morphology depending on temperature and pH were examined by structural analysis. The Boehmite($Al_2O_3$.$H_2O$ or AIO(OH)) was predominantly formed in high temperature region over 4$0^{\circ}C$, while the Bayerite($Al_2O_3$.$H_2O$ or $Al(OH)_3$) below $30^{\circ}C$ of hydrolysis temperature. The Boehmite formation was preferred to the Bayerite in acidic solution in the same hydrolysis temperature. The slowly formed Bayerite phase showed facet crystalline structure, while the fast formed Boehmite was fine fiber with a large aspect ratio of several nm in diameter and several hundred nm in length, and with much larger specific surface area(SSA) than that of Bayerite. The highest SSA was about $420m^2$/g.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

Optical and dielectric properties of nano BaNbO3 prepared by a combustion technique

  • Vidya, S.;Mathai, K.C.;John, Annamma;Solomon, Sam;Joy, K.;Thomas, J.K.
    • Advances in materials Research
    • /
    • v.2 no.3
    • /
    • pp.141-153
    • /
    • 2013
  • Nanocrystalline Barium niobate ($BaNbO_3$) has been synthesized by a novel auto-igniting combustion technique. The X-Ray diffraction studies reveals that $BaNbO_3$ posses a cubic structure with lattice constant $a=4.071{\AA}$. Phase purity and structure of the nano powder are further examined using Fourier-Transform Infrared and Raman spectroscopy. The average particle size of the as prepared nano particles from the Transmission Electron Microscopy is 20 nm. The UV-Vis absorption spectra of the samples are recorded and the calculated average optical band gap is 3.74eV. The sample is sintered at an optimized temperature of $1425^{\circ}C$ for 2h and attained nearly 98% of the theoretical density. The morphology of the sintered pellet is studied with Scanning Electron Microscopy. The dielectric constant and loss factor of a well-sintered $BaNbO_3$ at 5MHz sample is found to be 32.92 and $8.09{\times}10^{-4}$ respectively, at room temperature. The temperature coefficient of dielectric constant was $-179pp/^{\circ}C$. The high dielectric constant, low loss and negative temperature coefficient of dielectric constant makes it a potential candidate for temperature sensitive dielectric applications.

Bimetallic Co/Zn-ZIF as an Efficient Photocatalyst for Degradation of Indigo Carmine

  • Nguyen, Thanh Nhan;Nguyen, Hoang Phuc;Kim, Tae-Ho;Lee, Soo Wohn
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • Cobalt-incorporated zeolitic imidazolate framework ZIF-8 was synthesized by a simple one-pot synthesis method at room temperature. Powder X-ray diffraction patterns and energy dispersive X-ray spectrum confirmed the formation of the bimetallic Co/Zn-ZIF structure. UV-Vis diffuse reflectance spectra revealed that the bimetallic ZIF had a lower HOMO-LUMO gap compared with ZIF-8 due to the charge transfer process from organic ligands to cobalt centers. A hydrolytic stability test showed that Co/Zn-ZIF is very robust in aqueous solution - the most important criterion for any material to be applied in photodegradation. The photocatalytic efficiency of the synthesized samples was investigated over the Indigo Carmine (IC) dye degradation under solar simulated irradiation. Cobalt incorporated ZIF-8 exhibited high efficiency over a wide range of pH and initial concentration. The degradation followed through three distinct stages: a slow initial stage, followed by an accelerated stage and completed with a decelerated stage. Moreover, the photocatalytic performance of the synthesized samples was highly improved in alkaline environment rather than in acidic or neutral environments, which may have been because in high pH medium, the increased concentration of hydroxyl ion facilitated the formation of hydroxyl radicals, a reactive species responsible for the breaking of the Indigo Carmine structure. Thus, Co/Zn-ZIF is a promising and green material for solving the environmental pollution caused by textile industries.

A Study on Magnetic Properties of BaFe12O_19 Fabricated by Self-assembly Method (자기 조립법을 이용한 BaFe12O_19의 제조 및 자성 특성에 대한 연구)

  • Choi, Moon-Hee;Yu, Ji-Hun;Kim, Dong-Hwan;Lee, Hye-Mum;Kim, Su-Min;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.410-415
    • /
    • 2009
  • Hexagonal barium ferrite ($BaFe_{12}O_{19}$) nano-particles have been successfully synthesised using selfassembly method. Diethyleneamine (DEA) surfactant was used to fabricate the micelle structure of Ba-DEA complex under various DEA concentrations. $BaFe_{12}O_{19}$ powders were synthesized with addition Fe ions to Ba-DEA complex and then heat treated at temperature range of 800-1000${\circ}C$. The molar ratio of Ba/DEA and heat-treatment temperature significantly affected the magnetic properties and morphology of $BaFe_{12}O_{19}$ powders. $BaFe_{12}O_{19}$ powders synthesized with Ba/DEA molar ratio of 1 and heat-treated at 1000${\circ}C$ for 1 hour showed the coercive forces (iHc) of 4.84 kOe with average crystal size of about 200 nm.

A study on Magnetic Properties of BaFe12O19 Fabricated by Ultrasonic Spray-pyrolysis Process Using Self-Assembly Method (자기 조립 전구체를 이용한 초음파 분무 열분해 공정으로 제조한 BaFe12O19의 자기적 특성에 대한 연구)

  • Choi, Moon-Hee;Yu, Ji-Hun;Kim, Dong-Hwan;Chung, Kook-Chae;Kim, Yang-Do
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • Hexagonal barium ferrite ($BaFe_{12}O_{19}$) nano-particles have been successfully fabricated by spraypylorysis process. $BaFe_{12}O_{19}$ precursor solutions were synthesized by self-assembly method. Diethyleneamine (DEA) surfactant was used to fabricate the micelle structure of Ba-DEA complex under various DEA concentrations. $BaFe_{12}O_{19}$ powders were synthesized with addition of Fe ions to Ba-DEA complex and then fabricated $BaFe_{12}O_{19}$ powders by spray-pyrolysis process at the temperature range of $800{\sim}1000^{\circ}C$. The molar ratio of Ba/DEA and heat-treatment temperatures significantly affected the magnetic properties and morphology of $BaFe_{12}O_{19}$ powders. $BaFe_{12}O_{19}$ powders synthesized with Ba/DEA molar ratio of 1 and heat-treated at $900^{\circ}C$ showed the coercive forces (iHc) of 4.2 kOe with average crystal size of about 100 nm.

Porous Sn-incorporated Ga2O3 nanowires synthesized by a combined process of powder sputtering and post thermal annealing (분말 스퍼터링과 후열처리 복합 공정으로 제조한 주석 함유 갈륨 산화물 다공성 나노와이어)

  • Lee, Haram;Kang, Hyon Chol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.245-250
    • /
    • 2019
  • We investigated the post-annealing effect of Sn-incorporated β-Ga2O3 (β-Ga2O3 : Sn) nanowires (NWs) grown on sapphire (0001) substrates using radio-frequency powder sputtering. The β-Ga2O3 : Sn NWs were converted to a porous structure during the vacuum annealing process at 800℃. Host non-stoichiometric Ga2O3-x, is transformed into stoichiometric Ga2O3, where Sn atoms separate and form Sn nano-clusters that gradually evaporate in a vacuum atmosphere. As a result, the amount of Sn atoms was reduced from 1.31 to 0.27 at%. Pores formed on the sides of β-Ga2O3 : Sn NWs were observed. This increases the ratio of the surface to the volume of β-Ga2O3 : Sn NWs.

Synthesis of (Co,Mg)Al2O4 and (Ni,Mg)Al2O4 Blue Ceramic Nano Pigment by Polymerized Complex Method (착체중합법을 이용한 (Co,Mg)Al2O4 및 (Ni,Mg)Al2O4 청색 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Kim, Jin-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • In this study, the properties of blue inorganic nano-pigments with a spinel structure were systematically investigated. We report the preparation of a blue ceramic nano-pigment and the Co and Ni substitutional effects on the blue color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of cobalt and nickel-based blue ceramic nano-pigments. Various compositions of $Co_xMg_{1-x}Al_2O_4$ and $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using apolymerized complex method. The obtained powder was preheated at $400^{\circ}C$ for 5 h and then calcined at $1000^{\circ}C$ for 5 h. XRD patterns of the (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ samples showed a single phase of the spinel structure in all compositions. TEM results indicated nano-sized pigments for (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ with a particle size ranging from 20 to 50 nm. The characteristics of the color tones of (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ were analyzed by CIE $L^*a^*b^*$ measurements. In addition, the thermal stability and the binding characteristics of (Co,Mg)$Al_2O_4$, (Ni,Mg)$Al_2O_4$ are discussed in terms of the TG-DSC and FT-IR results, respectively.

Analysis of BNNT(Boron Nitride Nano Tube) synthesis by using Ar/N2/H2 60KW RF ICP plasma in the difference of working pressure and H2 flow rate

  • Cho, I Hyun;Yoo, Hee Il;Kim, Ho Seok;Moon, Se Youn;Cho, Hyun Jin;Kim, Myung Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.179-179
    • /
    • 2016
  • A radio-frequency (RF) Inductively Coupled Plasma (ICP) torch system was used for boron-nitride nano-tube (BNNT) synthesis. Because of electrodeless plasma generation, no electrode pollution and effective heating transfer during nano-material synthesis can be realized. For stable plasma generation, argon and nitrogen gases were injected with 60 kW grid power in the difference pressure from 200 Torr to 630 Torr. Varying hydrogen gas flow rate from 0 to 20 slpm, the electrical and optical plasma properties were investigated. Through the spectroscopic analysis of atomic argon line, hydrogen line and nitrogen molecular band, we investigated the plasma electron excitation temperature, gas temperature and electron density. Based on the plasma characterization, we performed the synthesis of BNNT by inserting 0.5~1 um hexagonal-boron nitride (h-BN) powder into the plasma. We analysis the structure characterization of BNNT by SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy), also grasp the ingredient of BNNT by EELS (Electron Energy Loss Spectroscopy) and Raman spectroscopy. We treated bundles of BNNT with the atmospheric pressure plasma, so that we grow the surface morphology in the water attachment of BNNT. We reduce the advancing contact angle to purity bundles of BNNT.

  • PDF

Mechanical Properties of Synthesized Nano Laminating $Ti_3SiC_2$ by Reaction Press Sintering (반응 가압 소결 방법으로 합성된 nano laminating $Ti_3SiC_2$의 기계적 특성)

  • 황성식;박상환;김찬묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.396-400
    • /
    • 2003
  • A new synthesis process for nano laminating Ti$_3$SiC$_2$ has been developed using TiCx (x=0.67) and Si powder as starting materials by a reaction hot pressing. Bulk Ti$_3$SiC$_2$ was fabricated using a green body consisting of TiCx and Si by a hot pressing under the pressures of 25 MPa at 1420-1550 $^{\circ}C$ for 90 min. The synthesized Ti$_3$SiC$_2$ was consisting of only TiCx and Ti$_3$SiC$_2$. The relative density of sintered bulk Ti$_3$SiC$_2$ was increased as the hot pressing temperature was increased, which was mainly due to the increase in TiCx contents in synthesized Ti$_3$SiC$_2$. The synthesized Ti$_3$SiC$_2$ bulk was consisted of nano sized lamella structure of 20-100 nm in thickness. It was found that TiCx particles in Ti$_3$SiC$_2$ would increase the 3-point bending strength of synthesized Ti$_3$SiC$_2$ bulk. The maximum 3-P. bending strength of synthesized Ti$_3$SiC$_2$ bulk was more than 800 MPa. The Vickers hardness of synthesized Ti$_3$SiC$_2$bulk was as low as 5 Gpa, which was decreased with the indentation load. The quasi-plastic deformation behaviors were observed around indentation mark on Ti$_3$SiC$_2$.

  • PDF