• 제목/요약/키워드: nano-sized resonator

검색결과 4건 처리시간 0.023초

A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation

  • Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.287-302
    • /
    • 2020
  • This investigation deals with a size-dependent coupled thermoelasticity analysis based on Green-Naghdi (GN) theory in nano scale using a new modified nonlocal model of heat conduction, which is based on the GN theory and nonlocal Eringen theory of elasticity. In the analysis based on the proposed model, the nonlocality is taken into account in both heat conduction and elasticity. The governing equations including the equations of motion and the energy balance equation are derived using the proposed model in a nano beam resonator. An analytical solution is proposed for the problem using the Laplace transform technique and Talbot technique for inversion to time domain. It is assumed that the nano beam is subjected to sinusoidal thermal shock loading, which is applied on the one of beam ends. The transient behaviors of fields' quantities such as lateral deflection and temperature are studied in detail. Also, the effects of small scale parameter on the dynamic behaviors of lateral deflection and temperature are obtained and assessed for the problem. The proposed GN-based model, analytical solution and data are verified and also compared with reported data obtained from GN coupled thermoelasticity analysis without considering the nonlocality in heat conduction in a nano beam.

소형 모바일 기기용 공진형 무선전력전송 시스템의 공진기 평면화 및 소형화에 따른 특성 연구 (Characteristic Study of Small-sized and Planer Resonator for Mobile Device in Magnetic Wireless Power Transfer)

  • 이훈희;정창원
    • 전자공학회논문지
    • /
    • 제54권4호
    • /
    • pp.16-21
    • /
    • 2017
  • 본 논문은 모바일 기기(노트북, 핸드폰, 태블릿 PC 등)를 위한 공진형 무선전력전송 시스템(Magnetic Resonance - Wireless Power Transfer; MR-WPT)의 실용성을 높이기 위한 평면형 소형 공진기 설계 방법을 제안하였다. 제안된 소형 평면형 공진기는 네 개의 루프와 공진기를 사용하는 공진형 무선전력 시스템에 적용 되며, 또한 무선전력 시스템은 송신기(Tx)와 수신기(Rx)가 동일한 루프와 공진기로 이루어졌다. 제안된 공진기는 나선형(Spiral) 코일의 형태로 소형 모바일 크기에 적합한 $50mm{\times}50mm$의 크기 이내로 설계 되었으며, 나선형 공진기의 선 두께와 선간 갭(gap) 그리고 선의 길이를 달리하는 4종류의 나선형 공진기를 선정하였다. 또한 작은 공진기 부피에서 높은 인덕턴스와 캐패시턴스를 얻기 위해 공진기 기판 (아크릴 ${\varepsilon}_r=2.56$, tan ${\delta}=0.008$)의 양면을 모두 활용하였다. 또한 루프는 공진기 부피를 최소화하기 위해 공진기와 동일 평면상에 설계 하였고, 이 또한 서로 다른 3가지의 크기를 사용하였다. 제안된 무선전력전송 시스템은 Tx와 Rx 두 개의 아크릴 기판에 제작되었으며, Tx와 Rx의 루프와 공진기는 구리시트로 만들어졌다. 제안된 12개의 조합 (공진기 4종 ${\times}$ 루프 3종)의 루프와 공진기에 대한 전력전송효율을 근 전송 거리 (1cm~5cm)상에서 시뮬레이션과 측정을 통해 산출하였다. 측정 결과 전력전송효율은 전송거리 1~5 cm에 따라 ${\fallingdotseq}40%$ 그리고 최대 ${\fallingdotseq}70%$ 이며, 이때 공진주파수는 A4WP 표준 무선전력전송 주파수인${\fallingdotseq}6.78MHz$를 유지한다. 제안된 부피에서 최소화된 평면형의 소형 공진기를 이용한 소형 모바일 기기의 공진형 무선전력 어플리케이션에 대한 가능성을 실험적으로 확인하였다.

A Biomolecular Sensing Platform Using RF Active System

  • Kim, Sang-Gyu;Lee, Hee-Jo;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • 제12권4호
    • /
    • pp.227-233
    • /
    • 2012
  • This paper describes a novel and compact biosensing platform using an RF active system. The proposed sensing system is based on the oscillation frequency deviation due to the biomolecular binding mechanism on a resonator. The impedance variation of the resonator, which is caused by a specific biomolecular interaction results in a corresponding change in the oscillation frequency of the oscillator so that this change is used for the discrimination of the biomolecular binding, along with concentration variation. Also, a Surface Acoustic Wave (SAW) filter is utilized in order to enhance the biosensing performance of our system. Because the oscillator operates at the skirt frequency range of the SAW filter, a small amount of oscillation frequency deviation is transformed into a large variation in the output amplitude. Next, a power detector is used to detect the amplitude variation and convert it to DC voltage. It was also found that the frequency response of the biosensing system changes linearly with three streptavidin concentrations. Therefore, we expect that the proposed RF biosensing system can be applied to bio/medical applications capable of detecting a nano-sized biomolecular interaction.

Magnetic Resonant Wireless Power Transfer with L-Shape Arranged Resonators for Laptop Computer

  • Choi, Jung Han;Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • 제17권3호
    • /
    • pp.126-132
    • /
    • 2017
  • In this study, we designed, measured, and analyzed a rearranged L-shape magnetic resonance coupling wireless power transfer (MR-WPT) system for practical applications with laptops. The typical four resonator MR-WPT (Tx part: source loop and Tx coil; Rx part: Rx coil and load loop) is difficult to apply to small-sized stationary and mobile applications, such as laptop computers, tablet-PCs, and smartphones, owing to the large volume of the Rx part and the spatial restrictions of the Tx and Rx coils. Therefore, an L-shape structure, which is the orthogonal arrangement of the Tx and Rx parts, is proposed for indoor environment applications, such as at an L-shaped wall or desk. The relatively large Tx part and Rx coil can be installed in the wall and the desk, respectively, while the load loop is embedded in the small stationary or mobile devices. The transfer efficiency (TE) of the proposed system was measured according to the transfer distance (TD) and the misaligned locations of the load loop. In addition, we measured the TE in the active/non-active state and monitor-open/closed state of the laptop computer. The overall highest TE of the L-shape MR-WPT was 61.43% at 45 cm TD, and the TE decreased to 27.9% in the active and monitor-open state of the laptop computer. The conductive ground plane has a much higher impact on the performance when compared to the impact of the active/non-active states. We verified the characteristics and practical benefits of the proposed L-shape MR-WPT compared to the typical MR-WPT for applications to L-shaped corners.