• Title/Summary/Keyword: nano-sized pore

Search Result 27, Processing Time 0.021 seconds

Preparation and characterization of nanoporous monolith with high thermal insulation performance (나노 기공성 단열 실리카 모노리스 제조 및 특성 연구)

  • Choi, Hyun-Muk;Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • In this study, we synthesized two different silica monoliths by using sol-gel, solvent exchange, surface modification, ambient pressure drying processes, and surfactant-based templating technique followed by calcination process. All of the prepared two silica monoliths showed crack-free appearance with fairly good transparency, and furthermore were confirmed to have extremely high porosity, specific surface area, and mean pore size below 30 nm. The silica aerogel sample exhibited finer and more homogeneous nano-sized pore structure due to spring back effect caused by surface modification, which resulted in better thermal insulation performance. Based on measured thermal conductivities and theoretical relationship, multi-layered glass window system in which silica monolith prepared in this study was inserted as a middle layer was revealed to have superior thermal insulation performance compared to conventional air-inserted glass window system.

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

Preparation of ZnO Thin Film by Electrophoretic Deposition(EPD)

  • Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The electrophoretic deposition(EPD) of ZnO nano-sized colloids is investigated by changing the colloid number concentration, applied force, and deposition time. The change of the colloid size in a suspension was examined by the different colloid number concentrations (N = $3.98{\times}10^{15}$, N = $3.98{\times}10^{14}$, and N = $3.98{\times}10^{13}$) with an increase of the deposition time and applied forces. Deposition behavior was investigated by changing the applied fields (from DC 5 V to 50 V) and the deposition time (5 min to 25 min). The surface microstructures of the as-deposited films were investigated by SEM. The dried films were sintered from $850^{\circ}C$ to $1,050^{\circ}C$ for 2 h and then the microstructures were also explored by SEM. The agglomeration rate was enhanced by increasing the colloid number concentration of colloids. Colloid number concentration in a suspension must be rapidly decreased at higher values of the electric field. ZnO nano-sized colloids had the highest zeta potential value of over -28 mV in methanol. A homogeneous microstructure was obtained at colloid number concentration of N = $3.98{\times}10^{13}$, applied DC field of 5 V/cm and 15 min of deposition time at an electrode distance of 1.5 cm. Under these conditions, the deposited films were sintered at $850^{\circ}C$ and $1,050^{\circ}C$ for 2 h. The results show a typical pore-free surface morphology of a uniform thickness of 400 nm under these experimental conditions.

Microporous Ceramic Membrane and Its Gas Separation Performance

  • Li, Lin;Li, Junhui;Qi, Xiwang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.16-19
    • /
    • 1996
  • Separation with synthetic membrane have become increasingly important processes in many fields. In the most application of membrane process, polymer membrane is used. the main advantage of polymers as a material for membrane preparation is the relative simplicity of this film formation which enables one to obtain rather high permeability rates. However, polymeric membranes have several limitations, such as high temperature instability, swelling and decomposition in organic solvent, et. al.. These limitations can be overcome by inorganic membrane. At the present time, commercially available inorganic membranes have pore diameters ranging 5nm to 50mm, and the predominant flow regime in such membrane is Knudsen diffusion. Since the Knudsen permeability is directly proportional to the molecular velocity, gases can be separated due to their molecular masses. However, this separation mechanism is only of important for light gases such as H2 and He. Other separation mechanisms like surface diffusion, active diffusion can play an important role only with very small pore diameters(2nm) and give rise to large permselectivities. Therefore, preparation of inorganic membrane with nano-sized pore have been attracting more and more attention.

  • PDF

Diffusion-Selectivity Analysis of Permanent Gases through Carbon Molecular Sieve Membranes

  • Kang, Jong-Seok;Park, Ho-Bum;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • The selectivity of a gas in the carbon molecular sieve membrane (CMSM) can be expressed as the ratio of the product of the diffusivity and the solubility of two different gases. The diffusivity is also expressed as the product of the entropy and the total energy (kinetic and potential energy) in the nano-sized pore of the membrane. The present study calculates the entropic-energy and selectivity of penetrant gases such as H$_2$, O$_2$, N$_2$, and CO$_2$ from the gas-in-a box theory to physically analyze the diffusivity of penetrant gas in slit-shaped pore of CMSM focusing on the restriction of gas motion based on the size difference between penetrant gas pairs. The contribution of each energy term is converted to entropic term separately. By the conjugated calculation for each entropic-energy, the entropic effects on diffusivity-selectivity for gas pairs such as H$_2$/N$_2$, CO$_2$/N$_2$, and O$_2$/N$_2$ were analyzed within active pore of CMSM. In the activated diffusion domain, the calculated value of entropic-selectivity lies between 9.25 and 111.6 for H$_2$/N$_2$, between 3.36 and 6.0 for CO$_2$/N$_2$, and between 1.25 and 16.94 for O$_2$/N$_2$, respectively. The size decrement of active pore in CMSM had the direct effect on the reduction of translational entropic-energy and the contribution of vibrational entropic-energy for N$_2$, O$_2$, and H$_2$ was almost negligible. However, the vibrational entropic term of CO$_2$ might extravagantly affect on the entropic-selectivity.

Inorganic-organic nano-hybrid; Preparation of Nano-sized TiO$_2$ Paste Trapped OMC Nano-emulsion and it's Application for Cosmetics (OMC Nano-emulsion을 포집하고 있는 Nano-TiO$_2$-Paste의 합성과 화장품의 응용)

  • Byung Gyu, Park;Jong Heon, Kim;Jin Hee, Im;Kyoung Chul, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.181-187
    • /
    • 2004
  • Preparations of mesoporous materials using various templates and their applicability have been intensively investigated for many years. We studied on synthesizing mesoporous Ti02 with pores in which sensitive compounds having weak physico-chemical properties such as thermal or UV irradiation and low solubility in solvent are trapped. Prior to trapping OMC in the pores of mesoporous titania, OMC was nano-emulsified in O/W system using Lecithin. Thereafter the OMC was trapped in the pores of mesoporous titania using sol-gel method. Main focus of this work is to prepare OMC-trapped mesoporous titania and to trace the stability and solubility of nano-emulsified OMC in the pores of mesoporous titania, and compared with that of mesoporous silica. OMC-trapped mesoporous Inorganic-Organic hybrid titania showed higher factors in sun protecting and a skin penetration phenomenon was reduced.

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

Gas Sorption Analysis of Metal-organic Frameworks using Microresonators (마이크로진동자 기반 금속유기골격체의 기체 흡탈착 분석)

  • Kim, Hamin;Choi, Hyun-Kuk;Kim, Moon-Gab;Lee, Young-Sei;Yim, Changyong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.11-16
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are porous materials with nano-sized pores. The degree of gas adsorption and pore size can be controlled according to types of metal ions and organic ligands. Many studies have been conducted on MOFs in the fields of gas storage and separation, and gas sensors. For rapid and quantitative gas adsorption/desorption analyses, it is necessary to form various MOF structures in uniform films on a sensor surface. In this review, some of representative direct methods for uniformly synthesizing MOFs such as MIL-53 (Al), ZIF-8, and Cu-BDC from anodized aluminum oxide, zinc oxide nanorods, and copper thin films, respectively on the surface of a microresonator are highlighted. In addition, the operation principle of quartz crystal microbalance and microcantilever, which are representative microresonators, and the interpretation of signals that change when gas is adsorbed to MOFs are covered. This is intended to enhance the understanding of gas adsorption/desorption analysis of MOFs using microresonators.

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion (Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향)

  • Im, Yeon-Min;Choi, Jung-Il;Khang, Dong-Woo;Nam, Tae-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.66-70
    • /
    • 2012
  • Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

Improvement of Light-Harvesting Efficiency of TiO2 Granules Through Chemical Interconnection of Nanoparticles by Adding TEOT to Spray Solution

  • Lim, Mi Ja;Song, Shin Ae;Kang, Yun Chan;So, Won-Wook;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.632-637
    • /
    • 2015
  • Mesoporous $TiO_2$ granules were prepared by spray pyrolysis using nano-sized titania particles which were synthesized by a hydrothermal method, and they were evaluated as the photoanode of dye-sensitized solar cells. To enhance the cell efficiency, nanoparticles within granules were chemically interconnected by adding titanium ethoxide (TEOT) to colloidal spray solution. The resulting titania particles had anatase phase without forming rutile. $TiO_2$ granules obtained showed about 400 nm in size, the specific surface area of $74-77m^2/g$, and average pore size of 13-17 nm. The chemical modification of $TiO_2$ granules by adding TEOT initially to the colloidal spray solution was proved to be an effective way in terms of increasing both the light scattering within photoanode and the lifetimes of photo-excited electrons. Consequently, the light-harvesting efficiency of TEOT-modified granules (${\eta}=6.72%$) was enhanced about 14% higher than primitive nanoparticles.