• Title/Summary/Keyword: nano-sized airborne particles

Search Result 3, Processing Time 0.022 seconds

Classification and Condensation of Nano-sized Airborne Particles by Electrically Tuning Collection Size (포집크기의 전기적 튜닝 기술을 이용한 나노크기의 공기중 입자 분류 및 수농도 응축)

  • Kim, Yong-Ho;Kwon, Soon-Myoung;Park, Dong-Ho;Hwang, Jung-Ho;Kim, Yong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1874-1879
    • /
    • 2008
  • It is not easy to detect nano-sized airborne particles (< 100 nm in diameter) in air. Therefore, the condensation of the nanoparticles alongside of the size-classification is needed for their detection. This paper proposes a hybrid (aerodynamic+electrical) particle classification and condensation device using a micro virtual impactor (${\mu}VI$). The ${\mu}VI$ can classify the nanoparticles according to their size and condense the number concentration of nanoparticles interested. Firstly, the classification efficiency of the ${\mu}VI$ was measured for the particles, polystyrene latex (PSL), ranging from 80 to 250 nm in diameter. Secondly, the nanoparticles, NaCl of 50 nm in diameter, were condensed by 4 times higher. In consequence, the output signal was amplified by 4 times (before condensation: 4 fA, after condensation: 16 fA). It is expected that the proposed device will facilitate the detection of nanoparticles.

  • PDF

Design and Performance Evaluation of Electrical Impactor for Nano Environmental Aerosols (나노 환경입자 측정용 전기적 임팩터의 설계 및 성능평가)

  • Ji, Jun-Ho;Cho, Myung-Hoon;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1417-1422
    • /
    • 2003
  • An electrical cascade impactor is a multistage impaction device to separate airborne particles into aerodynamic size classes using electrical method. We designed a real-time three-stage electrical low-pressure impactor, which is proper to nanometer sized environmental aerosols. Performance evaluation was carried out for stage 1 and 2. The monodisperse liquid dioctyl sebacate (DOS) particles were generated using condensation-evaporation followed by electrostatic classification using DMA (differential mobility analizer) for particles with diameters in the range of $0.04{\sim}0.8{\mu}m$. The evaluation of the electrical impactor is based on the use of two electrometers, one connected to the impaction plate of the impactor, and the other to the faraday cage as backup filter. The results showed that the experimental 50% cutoff diameters in the operation pressure were 0.53 and $0.12{\mu}m$ for stage 1 and stage 2. The effect of operation pressure on the cutoff diameter and the steepness of collection effcieicy curves is investigated.

  • PDF

Performance assessment of HEPA filter to reduce internal dose against radioactive aerosol in nuclear decommissioning

  • Hee Kwon Ku;Min-Ho Lee;Hyunjin Boo;Geun-Dong Song;Deokhee Lee;Kaphyun Yoo;Byung Gi Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1830-1837
    • /
    • 2023
  • The thermal cutting of contaminated or activated metals during decommissioning nuclear power plants inevitably results in the release of radioactive aerosol. Since radioactive aerosols are pernicious particles that contribute to the internal dose of workers, air conditioning units with a HEPA filter are used to remove radioactive aerosols. However, a HEPA filter cannot be used permanently. This study evaluates the efficiency and lifetime of filters in actual metal cutting condition using a plasma arc cutter and a high-resolution aerosol detector. The number concentration and size distribution of aerosols from 6 nm to 10 ㎛ were measured on both the upstream and downstream sides of the filter. The total aerosol removal efficiency of HEPA filter satisfies the standard of removing at least 99.97% of 0.3 ㎛ airborne particles, even if the pressure drop increases due to dust feeding load. The pressure drop and particle size removal efficiency at 0.3 ㎛ of the HEPA filter were found to increase with repeated cutting experiments. By contrast, the efficiency of used HEPA filter reduced in removing nano-sized aerosols by up to 79.26%. Altogether, these results can be used to determine the performance guidance and replacement frequency of HEPA filters used in nuclear power plants.