• Title/Summary/Keyword: nano-size particle

Search Result 723, Processing Time 0.03 seconds

Characteristics of Nano-particle Emitted by Auto-ignited Engine with ULSD, Bio-diesel and DME Fuel and Effects of Oxidation Catalyst on Its Reduction (디젤연소가능 청정연료(ULSD, Bio-Diesel, DME)엔진의 극미세입자 정량화 및 촉매 영향)

  • Lee, Jin-Wook;Bae, Choong-Sik;Schonborn, Alessandro;Ladommatos, Nicos
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.81-89
    • /
    • 2009
  • In this experimental study, the effects of clean alternative fuels compatible with diesel combustion on nano-sized particle emission characteristics were investigated in a 0.5L auto-ignited single-cylinder engine with a compression ratio of 15. Because the number concentration of nano-sized particles emitted by automotive engine, that are suspected of being hazardous to human health and environment, might increase with engine fuel considerably and recently attracted attention. So a ultra-low sulfur diesel(ULSD), BD100(100% bio-diesel) and Di-Methyl Ether(DME) fuels used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that this measurements involving the large proportion of particles under size order of 300nm and number concentration of $4{\times}10^9$ allowed a single or bi-modal distribution to be found at different engine load conditions. Also the influence of oxygen content in fuel and the catalyst could be a dominant factor in controlling the nano-sized particle emissions in auto-ignited engine.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • v.32 no.3
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.

A Study on Preparation of Nano size cement particle by Mechanical method (기계적 방법에 따른 나노 시멘트 입자의 제조에 관한 연구)

  • Jo Byung-Wan;Park Jong-Bin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.216-219
    • /
    • 2004
  • Due to the recent amazing achievements in nano technology. preparation of cement nano particles by mechanical method are examined to improve their properties. The experimental results show that the particle size after 3 hr milling were about 500nm. The SEM photographs of specimens also reveal that average sizes of cement particles are gradually decreased by milling time. And in the TG/DSC, influence of the alcohol is showed strongly. The value of TG of the crushed cement was larger than that of the non-crushed cement. That is also judged to be cause the alcohol.

  • PDF

The Relation of Crystallite Size and Ni2+ Content to Ferromagnetic Resonance Properties of Nano Nickel Ferrites

  • Lafta, Sadeq H.
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.188-195
    • /
    • 2017
  • The ferromagnetic resonance and other magnetic properties dependence on $Ni^{2+}/Fe^{3+}$ ratio and crystallite size were investigated for nano nickel ferrite ($NiFe_2O_4$). The crystallite size was controlled by controlling the nickel content in the starting material solution. The XRD and TEM were utilized to measure the crystallite size through Scherrer formula and particle size respectively. The most frequent particle sizes were lower than crystallite size, which ranged from 16.5 to 44.65 nm. The general behavior of M-H loop shapes and parameters showed superparamagnetic one. The saturation magnetization had a maximum value at $Ni^{2+}/Fe^{3+}$ molar ratio equal to 0.186. The FMR signals showed, generally, broad linewidths, where the maximum width and minimum resonance field were for the sample of the lowest crystalline size. Furthermore, FMR resonance field shows linear dependence on crystalline size. The fitting relation was estimated to express this linear dependency on the base of behavior coincidence between particle size and the inverse of saturation magnetization. The given interpretations to understand the intercept and the slope meanings of the fitted relation were based on Larmor equation, and inhomogeneous in the anisotropy constant.

Effect of particle sizes on CHF enhancement and boiling characteristics of nano-fluids (나노유체의 임계열유속 및 비등특성에 미치는 나노입자 크기의 영향)

  • Jo, Byeong-Nam;Kang, Jun-One;Yoo, Jai-Suk;Kim, Hyun-Jung
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.125-130
    • /
    • 2006
  • The characteristics of boiling heat transfer and critical heat flux (CHF) behavior of nano-fluids were studied by using various sized silver and alumina nanoparticles. The diameter of nanoparticles was from 2 nm to 250 nm for silver and from 20nm to 40nm for alumina. Pool boiling characteristics and CHF enhancement of nano-fluids with different sized nanoparticles were compared with those of pure water and each nano-fluids. The experiment was performed at atmospheric pressure and the temperature of the pool was maintained constantly by using a flat immersed heater. The concentration of nano-fluids was uniform in all experiments as 0.01g/liter. The results showed that the measured boiling curves were shifted to the right. It demonstrated that the occurrence of nucleate boiling regime in nano-fluids retarded, compared with that of pure water. Also, in nano-fluids, the boiling curves showed that CHF of nano-fluids is significantly enhanced and represented the effect of particle size on boiling characteristics.

  • PDF

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing;Park, Yeong Min;Tan, Xing Yan;Bae, Mun Ki;Kim, Dong Jun;Jang, Tae Hwan;Kim, Min Su;Lee, Seung Whan;Kim, Tae Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.589-596
    • /
    • 2019
  • Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

A Study on the Optical Properties of γ-Fe2O3 Nano Particles (γ-Fe2O3 nano 입자의 광학적 특성에 관한 연구)

  • Lee, Kwon-Jai;An, Jeung-Hee;Shin, Jae-Soo;Kim, Chang-Man;Ozaki, Hajime;Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.739-742
    • /
    • 2006
  • The ${\gamma}-Fe_2O_3$ nano particles in the size range of $5{\sim}30$ nm were prepared by a chemical coprecipitation method. The nano particles were coated with 2nd surfactants for obtaining the water-based. The size effect of ${\gamma}-Fe_2O_3$ nano particles for the ultraviolet protection was investigated. The variation of the UV-Vis transmittance spectra as a function of wavelength for a ${\gamma}-Fe_2O_3$ nano particles were showed red-shifted increase with the particle size. The protective effects of UVA onset at near 469, 494, 591 nm for a particle size of 8.7, 9.1 and 12 nm. It is shown that the ${\gamma}-Fe_2O_3$ nano particles was good materials for protect of UV.

Performance characteristics of AGM lead acid battery with the content of positive plate incorporating nano-size additive material (나노 사이즈 입자가 포함된 양극 활물질 함량에 따른 차량용 AGM 연축전지 성능 특성)

  • Lim, Tae Seop;Kim, Sung Jun;Kim, Sang Dong;Yang, Seung Cheol;Jung, Yeon Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.4
    • /
    • pp.123-130
    • /
    • 2020
  • Nano seed incorporated in micro-sized 4BS (Tetrabasic lead Sulfate) seed was applied to the positive electrode active material and compared with Nano 4BS seed (NS). The dispersion of NS decreased due to the aggregation phenomenon, while the nano seed incorporated in micro-sized 4BS seed (INS) could confirm excellent dispersion. As the content of INS increased, the particle size of the active material became small and constant, which was confirmed through SEM and particle size analysis. The specific surface area for the reaction was increased and the high-rate discharge and lifetime characteristics were improved. In order to confirm the variation in particle size distribution in the plate manufacturing process, internal resistance and voltage were measured for 200 AGM lead-acid batteries, and it was confirmed that batteries quality variation decreased.

Preparation of Pt/C catalyst for PEM fuel cells using polyol process (Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조)

  • Oh, Hyoung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

The Quality Investigation of 6H-SiC Crystals Grown by a Conventional PVT Method with Various SiC Powders

  • Yeo, Im-Gyu;Lee, Tae-Woo;Lee, Won-Jae;Shin, Byoung-Chul;Choi, Jung-Woo;Ku, Kap-Ryeol;Kim, Young-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.61-64
    • /
    • 2010
  • In this paper, we investigate the quality difference of SiC crystals grown by a conventional physical vapor transport method using various SiC powders. While the growth rate was revealed to be dependent upon the particle size of the SiC powder, the growth rate of SiC bulk crystals grown using SiC powder with a smaller particle size (20 nm) was definitely higher than those using lager particle sizes with $0.1-0.2\;{\mu}m$ and $1-10\;{\mu}m$, respectively. All grown 2 inch SiC single crystals were proven to be the polytype of 6H-SiC and the carrier concentration levels of about $10^{17}\;cm^3$ were determined from Hall measurements. It was revealed that the particle size and process method of SiC powder played an important role in obtaining a good quality, high growth rate, and to reduce growth temperature.