• Title/Summary/Keyword: nano-size particle

Search Result 723, Processing Time 0.026 seconds

Effect of Dextran Gel on Preparation of Nano-liposomes Loaded with Ginkgolide

  • Tong, Yuan;Chen, Yan;Pan, Jian;Huang, Li;Wang, Ruijun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2542-2546
    • /
    • 2010
  • The objective of this paper was to investigate the effect of dextran gel on preparation of nano-liposomes loaded with ginkgolide. During preparation, Sephadex G75, G50 and G25 were added in the aqueous phase respectively. From the experiment, nano-liposomes prepared by dextran gels were found spherical and smooth. The result indicated that aperture of dextran gels were narrower, particle size of nano-liposomes was smaller (207.13 ~ 89.16 nm) and zeta potential was greater (-36.2 ~ -29.5 mV) in more negative. The study also revealed that differences of the entrapment efficiency and drug loading among the three types of nano-liposomes were not significant. In vitro drug release test demonstrated that nano-liposomes had a better controlled release. To conclude, by using dextran gel in the preparation of nano-liposome loaded with ginkgolide, the particle size could be effectively controlled and the drug stability could be improved.

Effect of oil particle size on dispersion stability in oil in water emulsion (Oil in Water 에멀전에서 오일 입자 크기가 분산 안정성에 미치는 영향)

  • Hwangbo, Sunae;Chu, Minchul;Moon, Changkwan
    • Particle and aerosol research
    • /
    • v.13 no.3
    • /
    • pp.133-139
    • /
    • 2017
  • In this paper, we proposed an emulsification method without using an emulsifier and investigated the effects of particle size distribution in fluids on dispersion stability. Surfactant-free oil in water emulsion was prepared with 1 % (w/w) of olive oil by using high speed agitation, high pressure and ultrasonic dispersion methods. The particle size, microscopic observation, and dispersion stability of each sample were evaluated and dispersion stability according to various dispersion methods was compared. As a result, the emulsion dispersed by the ultrasonic dispersion method showed the smallest particle size and uniform distribution of $0.07{\sim} 0.3{\mu}m$ and was the most stable in a 7 days stability evaluation. In the above experiment, four olive oil emulsions having different particle sizes were prepared using ultrasonic dispersion technology that was capable of producing stable emulsions. The dispersion stability of each samples with oil droplet sizes of (A) 0.1 to $0.5{\mu}m$, (B) 0.3 to $4{\mu}m$, (C) 1 to $10.5{\mu}m$ and (D) 2 to $120{\mu}m$, was observed for 7 days, and the relationship between the stability and performance was studied. Emulsion (A) with particle size less than $0.5{\mu}m$ displayed the dispersion stability showing below 5 % change in a 7 days stability evaluation. In the case of (B), (C), and (D) that had larger particle than $0.5{\mu}m$, the changes of dispersion stability were 10 %, 13 % and 35 % respectively. From these results, it was proved that dispersion stability of emulsion with uniform particle size of $0.5{\mu}m$ or less was confirmed to be very stable.

Analysis of Diesel Nano-particle Number Distribution Characteristics for Three Different Particle Measurement Systems (3개 입자측정스시템별 디젤 극미세입자의 수량분포 특성 비교)

  • Lee, Jin-Wook;Kim, Hong-Suk;Cho, Gyu-Baek;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.144-150
    • /
    • 2007
  • In recent years, the particle number emissions rather than particulate mass emissions in automotive engine have become the subject of controversial discussions. Recent results from the health effects studies imply that it is possible that particulate mass does not properly correlated with the variety of health effects attributed to diesel exhaust. So, the concern is instead now focusing on nano-sized particles emitted from I. C. engine. This study has been performed for the better understanding about the engine nano-particle for 3-measurement systems with different measuring principle. Firstly, EEPS is a newly introduced instrument for size distribution measurement of engine exhaust particles. It can measure nano-particles with an adequate resolution and in real time. In this study, the characteristics of EEPS were compared with ELPI and SMPS. As a research results, EEPS showed a same effect of engine load on the size distribution with ELPI and SMPS. But the quantitative results of EEPS were more similar to SMPS than ELPI, because the EEPS and SMPS use a same principle for classifying particles by size. The capability for transient measurement of EEPS was equivalent to that of ELPI.

Study of complete transparent nano-emulsions which contain oils

  • Kwak, Jong-Im;Kim, Ju-Duck;J, i-Hong-Geun
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.258-267
    • /
    • 2003
  • Recently inside nano liposome particles or nano-emulsions which contain tough-melting physiology activity materials or the coefficient of low organism utilization promote the coefficient of organism utilization, so this part has been studied a lot because they can absorb selectly cosmetics, specially physiology activity materials, into the skin. Also, in particle size, cells interstitial lipid interval are 30~50nm, so nano-emulsions that the size is similar to 30~50 nm are made to study for absorbing quickly into the skin. And transparent skin which contains oils in common skin lotion dosage form has become the center of public interest. The used nano-emulsions in this study were unsaturated lecithin/co-surfactant! ethanol/ oil / water. And polysorbate 20/ polysorbate 80/ Dicetyl phosphate/hydrogenated .caster oil/ isoceteth-20/SLS were used in co-surfactant. The used oils were cyclomethicone and caprylic/capric triglyceride. The manufacturing process was that microfluidizer was fixed in 1000bar and transit times were changed from 1 to 10 times. From transparency and particle size, the transparency sequence was SLS> polysorbate 20= polysorbate 80> isoceteth-20> dicetyl phosphate >hydrogenated caster oil and the particle size was small. Specially cyclomethicone nano-emulsions, when we made unsaturated lecithin /SLS /ethanol/water/cyclomethicone, cyclomethicone 5% was good for transparency. And 20% of this was used for making transparent skin toner in common skin dosage form.

  • PDF

알루미나 나노 Particle의 분산 평가 및 최적화

  • Park, Guk-Hyo;Sin, Hyo-Sun;Yeo, Dong-Hun;Hong, Yeon-U
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.251-251
    • /
    • 2009
  • The generation of energy and the cooling of system using thermoelectric semiconductor material have been in spotlight. Thermoelectric effect increases with the decrease of the thermal conductivity. In the thermoelectric devices, thermal conductivity is related to phonon scattering. Therefore, few studies have been conducted in the thermoelectric materials dispersed nano oxide particle for increasing the phonon scattering. However, core-shell structure which nano particle disperses in solvents and then which thermoelectric materials coated on the nano oxide particles has not been reported. In this study, we selected commercial nano powder such as $Al_2O_3$. This nano particle was about 20nm and was crushed aggregate by mechanical treatment. We have developed the effect of the dispersant and the solvent. The properties of particles were evaluated by SEM, TEM, particle size analysis, and BET. Dispersion and dispersion stability were evaluated by electronic microscope and turbidity.

  • PDF

Characteristics of TiO2 Particle Generation and Transport in Diffusion Flame Reactor (확산 화염 반응기에서의 TiO2 입자생성 및 전달현상)

  • Choi, Sang-Keun;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.255-260
    • /
    • 2002
  • We prepared the nano-sized $TiO_2$ particles by the diffusion flame reactor and investigated the effects of several process variables on the generation and transport properties of $TiO_2$ particle. As the length from the tip of diffusion flame reactor increases, the size of $TiO_2$ particle increases by the coagulation between particles. The structure of $TiO_2$ particles prepared is almost found to be anatase. It was found that the $TiO_2$ particle size depends more largely on the change of reactor temperature than on the change of inlet $TiCl_4$ concentration.

  • PDF

Effects of Air Pressure on the Fabrication of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process (분무열분해 공정에 의한 주석산화물 나노분체 제조에 미치공기압력의 영향)

  • Yu, Jae-Keun;Kim, Dong-Hee
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.690-696
    • /
    • 2011
  • In this study, nano-sized tin oxide powder with an average particle size of below 50 nm is prepared by the spray pyrolysis process. The influence of air pressure on the properties of the generated powder is examined. Along with the rise of air pressure from $0.1kg/cm^2$ to $3kg/cm^2$, the average size of the droplet-shaped particles decreases, while the particle size distribution becomes more regular. When the air pressure increases from $0.1kg/cm^2$ to $1kg/cm^2$, the average size of the dropletshaped particles, which is around 30-50 nm, shows hardly any change. When the air pressure increases up to $3kg/cm^2$, the average size of the droplet-shaped particles decreases to 30 nm. For the independent generated particles, when the air pressure is at $0.1kg/cm^2$, the average particle size is approximately 100 nm; when the air pressure increases up to $0.5kg/m^2$, the average particle size becomes more than 100 nm, and the surface structure becomes more compact; when the air pressure increases up to $1kg/cm^2$, the surface structure is almost the same as in the case of $0.5kg/cm^2$, and the average particle size is around 80- 100 nm; when the air pressure increases up to $3kg/cm^2$, the surface structure becomes incompact compared to the cases of other air pressures, and the average particle size is around 80-100 nm. Along with the rise of air pressure from $0.1kg/cm^2$ to $0.5kg/cm^2$, the XRD peak intensity slightly decreases, and the specific surface area increases. When the air pressure increases up to $1kg/cm^2$ and $3kg/cm^2$, the XRD peak intensity increases, while the specific surface area also increases.

Effect of Reaction Factors on the Fabrication of Nano-Sized Ni-ferrite Powder by Spray Pyrolysis Process (분무열분해공정에 의한 니켈 페라이트 나노 분말 제조에 미치는 반응인자들의 영향)

  • 유재근;서상기;박시현;한정수
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.202-209
    • /
    • 2004
  • In this study, nano-sized powder of Ni-ferrite was fabricated by spray pyrolysis process using the Fe-Ni complex waste acid solution generated during the shadow mask processing. The average particle size of the produced powder was below 100 nm. The effects of the reaction temperature, the inlet speed of solution and the air pressure on the properties of powder were studied. As the reaction temperature increased from 80$0^{\circ}C$ to 110$0^{\circ}C$, the average particle size of the powder increased from 40 nm to 100 nm, the fraction of the Ni-ferrite phase was also on the rise, and the surface area of the powder was greatly reduced. As the inlet speed of solution increased from 2 cc/min. to 10 cc/min., the average particle size of the powder greatly increased, and the fraction of the Ni-ferrite phase was on the rise. As the inlet speed of solution increased to 100 cc/min., the average particle size of the powder decreased slightly and the distribution of the particle size appeared more irregular. Along with the increase of the inlet speed of solution more than 10 cc/min., the fraction of the Ni-ferrite phase was decreased. As the air pressure increased up to 1 $kg/cm^2, the average particle size of the powder and the fraction of the Ni-ferrite phase was almost constant. In case of 3 $kg/cm^2 air pressure, the average particle size of the powder and the fraction of the Ni-ferrite phase remarkably decreased.

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.

Size Dependent Absorption Spectrum of ZnO Nanocrystals

  • Chang Ho Jung;Wang Yongsheng;Suh Kwang-Jong;Son Chang-Sik
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.431-434
    • /
    • 2005
  • To investigate the dependences of the absorption spectrum and electronic structure properties on the ZnO nano-particle size, ZnO nanocrystals were synthesized by a sol-gel method. The absorption onset peak exhibits a systematic blue-shift with decreasing particle size due to the quantum confinement effect, as well as, with decreasing $Zn^{2+}$ concentration. The increase of particle size is mainly controlled by coarsening and aggregation step during the nucleation and growth of ZnO nano-particles. The onset absorption spectrum of ZnO colloids changes from 310 to 355 nm as $Zn^{2+}$ concentration increases from 0.01 to 0.1 mole. The average particle size as a function of aging- time can be determined from the absorption spectra. The freshly prepared nanocrystal size was about 2.8nm.