• Title/Summary/Keyword: nano-size oxide powder

Search Result 93, Processing Time 0.027 seconds

A study on the Particulate Properties of Ti-Ni alloy Nanopowders Prepared by Levitational Gas Condensation Method (부양가스증발응축법으로 제조된 Ti-Ni 합금 나노분말의 특성 연구)

  • Han, B.S.;Uhm, Y.R.;Lee, M.K.;Kim, G.M.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.396-400
    • /
    • 2006
  • The Ti-Ni alloy nanopowders were synthesized by a levitational gas condensation (LGC) by using a micron powder feeding system and their particulate properties were investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) method. The starting Ti and Ni micron powders $150{\mu}m$ were incorporated into the micron powder feeding system. An ingot type of the Ti-Ni ahoy was used as a seed material for the levitation and evaporation reactions. The collected powders were finally passivated by oxidation. The x-ray diffraction experiments have shown that the synthesized powders were completely alloyed with Ti and Ni and comprised of two different cubic and monoclinic crystalline phases. The TEM results showed that the produced powders were very fine and uniform with a spherical particle size of 18 to 32nm. The typical thickness of a passivated oxide layer on the particle surface was about 2 to 3 nm. The specific surface area of the Ti-Ni alloy nanopowders was $60m^2/g$ based on BET method.

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process (초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동)

  • Ryu, KeunHyuk;So, HyeongSub;Yun, JiSeok;Kim, InHo;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.

Synthesis of Cu/Al2O3 Nanostructured Composite Powders for Electrode Application by Thermochemical Process (열화학적 방법에 의한 전극용 나노 Cu/Al2O3 복합분말 합성)

  • 이동원;배정현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.337-343
    • /
    • 2003
  • Nanostructured Cu-$Al_2O_3$ composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + $Al_2O_3$, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-$Al_2O_3$, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/$Al_2O_3$ composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/$Al_2O_3$ composite by the conventional internal oxidation process.

Synthesis of Amorphous Er3+-Yb3+ Co-doped TiO2 and Its Application as a Scattering Layer for Dye-sensitized Solar Cells

  • Han, Chi-Hwan;Lee, Hak-Soo;Lee, Kyung-Won;Han, Sang-Do;Singh, Ishwar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.219-223
    • /
    • 2009
  • $TiO_2$ doped with $Er^{3+\;and\;Yb^{3+}$ was used for fabricating a scattering layer and a nano-crystalline $TiO_2$ electrode layer to be used in dye-sensitized solar cells. The material was prepared using a new sol-gel combustion hybrid method with acetylene black as fuel. The $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide powder synthesized at 700oC had embossed structure morphology with a size between 27 to 54 nm that agglomerated to produce micron size particles, as observed by the scanning electron micrographs. The XRD patterns showed that the $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide had an amorphous structure, while using the same method without doping $Er^{3+}\;or\;Yb^{3+},\;TiO_2$ was obtained in the crystallite form with thea dominance of rutile phase. Fabricating a bilayer structure consisting of nano-crystalline $TiO_2$ and the synthesized $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide showed better scattering property, with an overall increase of 15.6% in efficiency of the solar cell with respect to a single nano-crystalline $TiO_2$ layer.

The Lubricant Effect of Oxidation and Wear Products of HVOF Co-alloy T800 Powder Coating

  • Cho, Tong Yul;Yoon, Jae Hong;Kim, Kil Su;Song, Ki Oh;Youn, Suk Jo;Chun, Hui Gon;Hwang, Soon Young
    • Corrosion Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.159-163
    • /
    • 2007
  • Micron size Co-alloy 800 (T800) powder is coated on the high temperature, oxidation and corrosion resistant super alloy Inconel 718 substrate by the optimal high velocity oxy-fuel (HVOF) thermal spray coating process developed by this laboratory. For the study of durability improvement of high speed spindle operating without lubricants, friction and sliding wear behaviors of the coatings are investigated both at room and at an elevated temperature of $1000^{\circ}F(538^{\circ}C)$. Friction coefficients, wear traces and wear debris of coatings are drastically reduced compared to those of non-coated surface of Inconel 718 substrate both at room temperature and at $538^{\circ}C$. Friction coefficients and wear traces of both coated and non-coated surfaces are drastically reduced at higher temperature of $538^{\circ}C$ compared with those at room temperature. At high temperature, the brittle oxides such as CoO, $Co_{3}O_{4}$, $MoO_2$ and $MoO_3$ are formed rapidly on the sliding surfaces, and the brittle oxide phases are easily attrited by reciprocating slides at high temperature through oxidation and abrasive wear mechanisms. The brittle solid oxide particles, softens, melts and partial-melts play roles as solid and liquid lubricants reducing friction coefficient and wear. These show that the coating is highly recommendable for the durability improvement coating on the machine component surfaces vulnerable to frictional heat and wear.

WOx Doped TiO2 Photocatalyst Nano Powder Produced by Sonochemistry Method (초음파 화학 반응을 이용한 WOx 도핑 TiO2 광촉매 나노 분말의 합성)

  • Cho, Sung-Hun;Lee, Soo-Wohn
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • Nano-technology is a super microscopic technology to deal with structures of 100 nm or smaller. This technology also involves the developing of $TiO_2$ materials or $TiO_2$ devices within that size. The aim of the present paper is to synthesize $WO_x$ doped nano-$TiO_2$ by the Sonochemistry method and to evaluate the effect of different percentages (0.5-5 wt%) of tungsten oxide load on $TiO_2$ in methylene blue (MB) elimination. The samples were characterized using such different techniques as X-ray diffraction (XRD), TEM, SEM, and UV-VIS absorption spectra. The photo-catalytic activity of tungsten oxide doped $TiO_2$ was evaluated through the elimination of methylene blue using UV-irradiation (315-400nm). The best result was found with 5 wt% $WO_x$ doped $TiO_2$. It has been confirmed that $WO_x-TiO_2$ could be excited by visible light (E<3.2 eV) and that the recombination rate of electrons/holes in $WO_x-TiO_2$ declined due to the existence of $WO_x$ doped in $TiO_2$.

Preparation of Nano-sized Titanium Oxide Powder Using Natural Polymer Matrix (천연고분자 매트릭스를 사용한 산화티탄 나노입자의 합성)

  • Kim, Soo-Jong;Han, Cheong-Hwa;Shim, Jae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.489-494
    • /
    • 2013
  • Nano-sized titanium oxide powders were synthesized by a polymer matrix technique using pulp and Titanium tetraisopropoxide (TTIP) as starting materials. The synthesized powders were characterized by XRD and FE-SEM. The particle size of the powders was controlled by preparation conditions, such as heat treatment temperature and time. After investigating various drying and heat treatment conditions, 50-100 nm sized homogeneous titanium oxide particles were obtained by treating at $600^{\circ}C$ for 1 h. The crystallization and rapid growth of particles was accelerated by increasing heat treatment temperature and time. Anatase phase generated below $600^{\circ}C$ transformed to the rutile phase with increasing heat treatment temperature. Moreover, above $800^{\circ}C$, heat treatment time had a very large influence on particle growth, and changing the heating condition also had a large influence on crystal growth.

Effect of Chamber Pressure on the Microstructure of Fe Nano Powders Synthesized by Plasma Arc Discharge Process (플라즈마 아크 방전법으로 제조된 Fe 나노분말의 미세조직에 미치는 챔버압력 영향)

  • 박우영;윤철수;김성덕;유지훈;오영우;최철진
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.328-332
    • /
    • 2004
  • Fe nanopowders were successfully synthesized by plasma arc discharge (PAD) process using Fe rod. The influence of chamber pressure on the microstructure was investigated by means of X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). The prepared particles had nearly spherical shapes and consisted of metallic cores (a-Fe) and oxide shells (Fe$_{3}$O$_{4}$), The powder size increased with increasing chamber pressure due to the higher dissolution and ejection rate of H$_2$ and gas density in the molten metal.

The studies on synthesis of aluminum oxide and boron oxide co-doped zinc oxide(AZOB) powder by spray pyrolysis (분무열분해법(Spray Pyrolysis)에 의한 알루미늄 산화물과 보론 산화물이 함께 도핑된 산화아연(AZOB: $Al_2O_3$ and $B_2O_3$ Co-doped Zinc Oxide)의 분말 제조에 대한 연구)

  • Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.731-739
    • /
    • 2014
  • Aluminum and boron co-doped zinc-oxide(AZOB) powders as transparent conducting oxide(TCO) were prepared by spray pyrolysis at $900^{\circ}C$. The micron-sized AZOB particles were prepared by spray pyrolysis from aqueous precursor solutions for aluminium, boron, and zinc. The micron-sized AZOB particle after the spray pyrloysis underwent post-heat treatment at $700^{\circ}C$ for 2 hours and it was changed fully to nano-sized AZOB particle by ball milling for 24 hours. The size of primary AZOB particle by Debye-Scherrer Equation and surface resistance of AZOB pellet were measured.