• 제목/요약/키워드: nano-rods

검색결과 33건 처리시간 0.026초

AAO에 의한 나노로드 제작 (Fabrication of nano-rod on AAO template)

  • 보보무로드 하므로구로프;박병현;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.482-484
    • /
    • 2008
  • Anodic aluminum oxide (AAO) which prepared with two-step anodizing method (with dissimilar solutions) was used as a template to fabricate highly ordered, free standing metal nano-rods. AAO nano-template technique can realize self-organized hexagonal pore structure with nanometer dimension size, it's easy to control pore diameter, length and density by varying anodizing conditions. Ni and Ni/Fe/Cu multi-metal layer nanorods were electrochemically deposited into AAO nano-template by AC voltage in simple sulfate solutions.. The properties of samples are tested by X-ray diffraction (XRD), field emission microscopy (FE-SEM).

  • PDF

Comprehensive study of internal modals interactions: Comparison of various axial nonlinear beam theories

  • Somaye Jamali Shakhlavi;Reza Nazemnezhad
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.273-288
    • /
    • 2024
  • The geometrical nonlinear vibrations of the gold nanoscale rod are investigated for the first time by considering the internal modals interactions using different nonlinear beam theories. This phenomenon is usually one of the important features of nonlinear vibration systems. For a more detailed analysis, the von-Karman effects, preserving all the nonlinear terms in the strain-displacement relationships of gold nanoscale rods in three displacement directions, are considered to analyze the nonlinear axial vibrations of gold nanoscale rods. It uses highly accurate analytical-numerical solutions for the clamped-clamped and clamped-free boundary conditions of nanoscale gold rods. Also, with the help of Hamilton's principle, the governing equation and boundary conditions are derived based on Eringen's theory. The influence of nonlinear and nonlocal factors on axial vibrations was investigated separately for all three theories: Simple (ST), Rayleigh (RT) and Bishop (BT). Using different theories, the effects of inertia and shear on the internal resonances of gold nanorods were studied and compared in terms of twoto-one and three-to-one internal resonances. As the nonlocal parameter of the gold nanorod increases, the maximum nonlinear amplitude occurs. So, by adding nonlocal effects in a gold nanorod, the internal modal interactions resulting from the unique structure can be enhanced. It is worth noting that shear and inertial analysis have a significant effect on internal modal interactions in gold nanorods.

Nanocrystals and Their Biomedical Applications

  • Jun, Young-wook;Jang, Jung-tak;Cheon, Jin-woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권7호
    • /
    • pp.961-971
    • /
    • 2006
  • Shape controlled synthesis of inorganic nanocrystals is one of the important issues in materials chemistry due to their novel shape dependent properties. Although various shapes of nanocrystals have been developed, a systematic account on the shape control of these nanocrystals still remains an important subject in materials chemistry. In this article, we will overview the recent developments in the geometrical shape evolution of semiconductor and metal oxide nanocrystals obtained by nonhydrolytic synthetic methods. Many structurally unprecedented motifs have appeared as zero-dimesional (D) polyhedrons, one-D rods and wires, two-D plates and prisms, and other advanced shapes such as branched rods, stars, and inorganic dendrites. Important parameters which determine the geometrical shapes of nanocrystals are also illustrated. In addition, as a possible application of such nanocrystals for biomedical sciences, we further describe their utilizations for cancer diagnosis through nanocrystal-assisted magnetic resonance imaging (MRI).

Germanium-based pinning dopants for MgB2 bulk superconductors

  • Chung, K.C.;Ranot, M.;Shinde, K.P.;Oh, Y.S.;Kang, S.H.;Jang, S.H.;Hwang, D.Y.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권2호
    • /
    • pp.36-39
    • /
    • 2019
  • Effects of the spherically shaped Ge and the rod-like carbon-coated Ge on the superconducting properties of $MgB_2$ were investigated. Pure Ge and carbon-coated Ge nano-powders were synthesized under the different amount of $CH_4$ (0 to 5 kPa) by using DC thermal plasma method. When the $CH_4$ was added ~100 nm sized Ge with a spherical shape changed to rod-like morphology with a diameter of ~30-70 nm and a length of ~400-500 nm. Also it was confirmed that thin carbon layers of a few nanometers were formed along the rod length and the agglomerated carbons were found on the edges of rods. Pure spherical Ge and Ge/C rods were mixed and milled with Mg & B precursor to form the doped $MgB_2$ bulk samples by the solid-state reaction method. Almost no change of $T_c$ was noticed for the pure Ge-added $MgB_2$, whereas $T_c$ was found to decrease with the Ge/C-added $MgB_2$ samples. It was found that the pure spherical Ge showed to have a negative effect on the flux pinning of $MgB_2$. However, Ge/C rods can enhance the flux pinning property of $J_c$ due to the coated carbon on Ge rods.

CRITICAL HEAT FLUX ENHANCEMENT

  • Chang, Soon-Heung;Jeong, Yong-Hoon;Shin, Byung-Soo
    • Nuclear Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.753-762
    • /
    • 2006
  • In this paper, works related to enhancement of the CHF are reviewed in terms of fundamental mechanisms and practical applications. Studies on CHF enhancement in forced convection are divided into two categories, CHF enhancement of internal flow in tubes and enhancement of CHF in the nuclear fuel bundle. Methods of enhancing the CHF of internal flows in tubes include enhancement of the swirl flow using twisted tapes, a helical coil, and a grooved surface; promotion of flow mixing using a hypervapotron; altering the characteristics of the heated surface using porous coatings and nano-fluids; and changing the surface tension of the fluid using additives such as surfactants. In the fuel bundle, mixing vanes or wire wrapped rods can be employed to enhance the CHF by changing the flow distributions. These methods can be applied to practical heat exchange systems such as nuclear reactors, fossil boilers, fusion reactors, etc.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

Observation of Strong Coupling between Cavity Photon and Exciton in GaN Micro-rod

  • Gong, Su-Hyun;Ko, Suk-Min;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.297.2-297.2
    • /
    • 2014
  • Strong exciton-photon coupling in microcavities have generated an intense research effort since quasiparticles called exciton polaritons are produced and shows interesting phenomena. Most of studies have been done with GaAs based microcavities at cryogenic temperature. Recently, GaN material which has large exciton binding energy and oscillator strength has much attention because strong coupling between photon and exciton could be realized at room temperature. However, fabrication of high quality microcavity using GaN is challengeable due to the large mismatch between the lattice and the thermal expansion coefficient in GaN based distributed Bragg mirror. Here, we observed strong coupling regime of exciton-photon in GaN micro-rods which were grown by metalorganic vapour phase epitaxy (MOCVD) on Si substrate. Owing to the hexagonal cross-section of micro-rod, whispering gallery modes of photon are naturally formed and could be coupled with exciton in GaN. Using angle-resolved micro-photoluminescence measurement, exciton polariton dispersion curves were directly observed from GaN micro-rod. We expect room temperature exciton polariton condensation could be realized in high quality GaN micro-rod.

  • PDF

분말 모합금 빌렛으로부터 제조된 Ni-W 합금테이프의 기계적 성질과 집합도 (Texture and Mechanical Properties of Ni-W Alloy Tapes Fabricated from Powder Mother Billets)

  • 김민우;전병혁;지봉기;정규동;김찬중
    • 한국분말재료학회지
    • /
    • 제14권1호
    • /
    • pp.13-18
    • /
    • 2007
  • The mother Ni-W (1-5 wt.%) alloy billets for coated conductor substrate were fabricated by powder metallurgy process. The tensile test results for the sintered Ni-W rods showed the increase of mechanical strength and decrease of ductility with increasing W content due to the solid solution hardening. All the fracture surfaces of the tested specimens showed the typical ductile fracture mode of dimple rupture due to the local necking. The Ni-W alloy billets were made into tape by cold rolling. After the appropriate heat treatment for recrystallization, the brass texture formed by the cold rolling was converted to the complete cube texture. The in-plane and out of plane texture of the tapes estimated by x-ray pole figure were smaller than 9 degree and 7 degree, respectively. The effect of the W addition on the texture development seems not to be significant.