• Title/Summary/Keyword: nano-powder

Search Result 1,133, Processing Time 0.03 seconds

Dynamic Compaction of Mechanochemically Alloyed Fe-Si Nano Powders by Magnetic Pulsed Pressure (기계화학적 합금화된 나노 Fe-6.5Si 분말의 자기 펄스압에 의한 동적성형)

  • Lee, G.-H.;Rhee, C.-K.;Kim, W.-W.;Yun, J.-W.;Lee, K.-S.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Nano Fe-6.5wt%Si powders have been synthesized by mechano-chemical process (MCP) for an application of soft magnetic core. Owing to hard and brittle characteristics of Fe-6.5Si nano powders having large surface area, it is very difficult to reach high density more than 70% of theoretical density (~7.4 g/$cm_3$) by cold compaction. To overcome such problem a magnetic pulsed compaction (MPC), which is one of dynamic compaction techniques, was applied. The green density was achieved about 78% (~5.8 g/$cm_3$) by MPC at room temperature.

Pulsed Electric Current Sintering of Nano-crystalline Iron-base Powders

  • Li, Yuanyuan;Long, Yan;Li, Xiaoqiang;Liu, Yunzhong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.272-273
    • /
    • 2006
  • A new process of pulsed electric current sintering was developed. It combines compaction with activated sintering effectively and can manufacture bulky nano-crystalline materials very quickly. A nano-structured steel is obtained with high relative density and hardness by this process. The average grain size of iron matrix is 58nm and the carbide particulate size is less than 100 nm. The densification temperature of ball-milled powders is approximately $200^{\circ}C$ lower than that of blended powders. When the sintering temperature increases, the density of as-sintered specimen increases but the hardness of as-sintered specimen first increases and then decreases.

  • PDF

Analysis of Densification Behavior of Nano Cu Powders during Cold Isostatic Pressing (나노 구리 분말의 냉간정수압 공정에 대한 치밀화 거동 해석)

  • 윤승채;김형섭;이창규
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.

Effect of Annealing Temperature on the Electromagnetic Wave Absorbing Properties of Nanocrystalline Soft-magnetic Alloy Powder (연자성 나노결정합금 분말의 열처리 온도에 의한 전자파 흡수 특성의 영향)

  • Hong, S.H.;Sohn, K.Y.;Park, W.W.;Moon, B.G.;Song, Y.S.
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.18-22
    • /
    • 2008
  • The electromagnetic (EM) wave absorption properties with a variation of crystallization annealing temperature have been investigated in a sheet-type absorber using the $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy powder. With increasing the annealing temperature the complex permeability (${\mu}_r$), permittivity (${\varepsilon}_r$) and power absorption changed. The EM wave absorber shows the maximum permeability and permittivity after the annealing at $610^{\circ}C$ for 1 hour, and its calculated power absorption is above 80% of input power in the frequency range over 1.5 GHz.

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.

Numerical Modeling of Nano-powder Synthesis in a Radio-Frequency Inductively Coupled Plasma Torch

  • Hur, Min Young;Lee, Donggeun;Yang, Sangsun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • v.27 no.1
    • /
    • pp.14-18
    • /
    • 2018
  • In order to understand the mechanism of the synthesis of particles using a plasma torch, it is necessary to understand the reaction mechanisms using a computer simulation. In this study, we have developed a simulation method to combine the Lagrangian scheme to follow microparticles and a nodal method to treat nanoparticles categorized with different particle sizes. The Lagrangian scheme includes the Coulomb force which affects the dynamics of larger particles. In contrast, the nodal method is adequate for the nanoparticles because the charge effect is negligible for nanoparticles but the number of nanoparticles is much larger than that of microparticles. This method is helpful to understand the dynamics and growth mechanism of micro- and nano-powder mixture observed in the experiment.

Mechanism and Characteristics of Nano-dispersed Powder by Pulsed Discharge Method

  • Kwon, Young-Soon;Ilyin, Alexander P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2003.10a
    • /
    • pp.27-32
    • /
    • 2003
  • The phenomenon of electrical explosion of conductors is considered in the context of the changes in the energy and structural states of the metal at the stages of energy delivery and relaxation of the primary products of EEC. It is shown that these changes are related to the forced interaction of an intense energy flux with matter and to the subsequent spontaneous relaxation processes. The characteristics of nano-sized metal powders are also discussed.

  • PDF