• 제목/요약/키워드: nano-pore

검색결과 278건 처리시간 0.026초

$CaCO_3$를 이용한 발포 마그네슘 합금의 제조 (Fabrication of Mg Alloy Foam via Melting Foaming Method Using $CaCO_3$ as Blowing Agent)

  • 양동휘;서창환;왕효숭;허보영
    • 한국주조공학회지
    • /
    • 제26권6호
    • /
    • pp.272-276
    • /
    • 2006
  • [ $CaCO_3$ ]를 발포제로 사용하여 균일한 기공구조를 가지는 AZ91과 AM60 마그네슘 합금의 발포 금속을 주조법을 통하석 제조하였다. 발포 금속의 제조가 가능한 이유와 발포 마그네슘 합금의 기공구조가 연구를 통하여 논의되었다. 마그네슘 합금의 용탕은 $CaCO_3$의 분해 거동에 영향을 미친다. 제조된 AZ91 마그네슘 합금의 발포 금속은 높은 기공률과 큰 기공의 크기를 가졌으며, 발포 금속들 중에서 상대적으로 쉽게 발포되는 것으로 판단된다.

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF

양극산화를 이용한 나노템플레이트 기공 크기 제어에 관한 연구 (A study on the pore size control of nano template by anodic aluminum oxidation)

  • 이수호;서문수;유현민;이재형;정연호;임동건;황현석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1495-1496
    • /
    • 2011
  • Anodic aluminum oxide (AAO) nanotemplates for nano electronic device applications have been attracting increasing interest because of ease of fabrication, low cost process, and possible fabrication in large area. The size and density of the nanostructured materials can be controlled by changing the pore diameter and the pole density of AAO nanotemplate. In this paper, AAO nanotemplate was fabricated by second anodization method. In addition, effects of electrolyte and anodization voltate on the microstructure of porous alumina films were investigated. Vertically well aligned pores had the average pore sizes of 15-70 nm and the length of approximately 40 ${\mu}m$.

  • PDF

나노 세공을 지나는 생체고분자 운동에 대한 격자-볼츠만과 분자동역학에 의한 수치해석 (COMBINED LATTICE-BOLTZMANN AND MOLECULAR-DYNAMICS SIMULATION OF BIOPOLYMER TRANSLOCATION THROUGH AN ARTIFICIAL NANO-PORE)

  • 수레수알라파티;강상모;서용권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.97-102
    • /
    • 2009
  • Translocation of biopolymers such as DNA and RNA through a nano-pore is an important process in biotechnology applications. The translocation process of a biopolymer through an artificial nano-pore in the presence of a fluid solvent is simulated. The polymer motion is simulated by Langevin molecular dynamics (MD) techniques while the solvent dynamics are taken into account by lattice-Boltzmann method (LBM). The hydrodynamic interactions are considered explicitly by coupling the polymer and solvent through the frictional and the random forces. From simulation results we found that the hydrodynamic interactions between polymer and solvent speed-up the translocation process. The translocation time ${\tao}_T$ scales with the chain length N as ${{\tau}_T}^{\propto}N^{\alpha}$. The value of scaling exponents($\alpha$) obtained from our simulations are $1.29{\pm}0.03$ and $1.41{\pm}0.03$, with and without hydrodynamic interactions, respectively. Our simulation results are in good agreement with the experimentally observed value of $\alpha$, which is equal to $1.27{\pm}0.03$, particularly when hydrodynamic interaction effects are taken into account.

  • PDF

알루미나 나노템플레이트의 기공형성에 미치는 2차 양극산화의 영향 (Effect of 2nd Anodization on the Pore Formation for Alumina Nano Templates)

  • 조수행;오한준;주은균;유창우;지충수
    • 한국재료학회지
    • /
    • 제12권7호
    • /
    • pp.533-539
    • /
    • 2002
  • Porous anodic aluminum oxide layer for nano templates was prepared in acidic solutions. In order to investigate effects of 2nd anodization on ordered formation behaviors of the porous oxide layers, electrochemical and microstructural studies were performed, primarily using TEM, FE- SEM, AFM, and Ultramicrotomy. The pore diameter of the anodic oxide layer increased approximately linearly with increasing voltages, and to the contrary, the pore density decreased. It was shown that 2nd anodizing on the cell base after dissolving 1st anodic oxide layer was remarkably effective for forming ordered array of the pores, comparing with the case for 1st anodization only. And for controlling the diameter of pores, widening method by chemical dissolution seemed more practical than by electrochemical methods.

나노섬유를 이용한 동전기 지반개량에 관한 특성 (Characteristics on Electroosmosis Ground Improvement Using Nano-geosynthetics)

  • 안광국;정구식;이준대
    • 한국지반환경공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.59-63
    • /
    • 2009
  • 본 연구는 지반개량공법에 사용되는 동전기 공법에서 나노섬유를 전극재로 사용하여 지반개량효과 및 나노섬유에 대한 전극재로서의 대체가능성을 확인하였다. 이를 위해 Electrokinetic cell을 제작하여 나노섬유를 PBD에 삽입 후 교반된 Kaolin clay에 전기삼투를 적용한 후 실험전후의 침하량, 함수비, 압밀배수량, 전단강도에 대한 지반개량효과를 비교 분석하였다. 또한 전기삼투실험은 전극거리와 전압경사를 변화시키면서 실험을 수행하였으며, 그 결과로 전압경사증가 및 전극거리가 감소할수록 침하량, 전단강도, 압밀배수량은 증가하였고 함수비는 감소하는 것으로 나타났다. 이는 지반개량을 위한 동전기 적용시 사용되는 전극재의 소재로 나노섬유가 충분한 가능성이 있는 것으로 판단된다.

  • PDF

Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fatima, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.85-107
    • /
    • 2020
  • Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives fewer number of field components compared to first-order plate model. Hamilton's principle has been utilized for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-size plates have been researched.

Study for Organic(Bio)-Inorganic Nano-Hybrid OMC

  • Lee, Jung-Eun;Ji, Hong-Geun;Park, Yoon-Chang;Lee, Kyoung-Chul;Yoo, Eun-Ah
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book I
    • /
    • pp.178-191
    • /
    • 2003
  • OMC is essentialiy necessary compound in sun goods as organic UV protecting products. But the skin-trouble problem is raising because of skin penetration of OMC. In this study, non-capsulated pure OMC was compared with Organic-Inorganic-Nano-hybrid OMC for skin penetration force and SPF degree. Organic- Inorganic Nano-Hybrid OMC is OMC trapped in the pore of the mesoporous silica synthesized by the sol-gel method after OMC is nanoemulsified in the system of the hydrogenated Lecithin/ Ethanol/caprylic/capric triglyceride/OMC/water. OMC- nano- emulsion was obtained by a microfluidizing process at 1000bar and then micelle size in the nanoemulsion solution is 100-200nm range. Mesoporous silica nano-hybrid OMC was prepared by the process; surfactant was added in dissolved OMC-Nanoemulsion, then the rod Micelle was formed. OMC-nanoemulsion was capsulated in this rod Micelle and then silica precursor was added in the OMC-nanoemulsion solution. Through the hydrolysis reaction of the silica precursor, mesoporous silica concluding OMC-Nanocapsulation was obtained. The nano-hybrid surface of this OMC-Nanoemulsion-Inorganic system was treated with polyalkyl-silane compound. OMC-Mesoporous silica Nano-hybrids coated with polyalkyl-silane compound show the higher sun protecting factor (SPF Analyzer: INDEX 10-15) than pure OMC and could reduce a skin penetration of OMC. The physico-chemical properties of these nano-hybrids measured on the SPF index, partical size, strcture, specific surface area, pore size, morphology, UV absorption, rate of the OMC dissolution using SPF Analyzer, Laser light scattering system, XRD, BET, SEM, chroma Meter, HPLC, Image analyzer, microfluidizer, UV/VIS. spectrometer.

  • PDF

계면활성제를 이용한 나노 실리카 및 카본 소재의 합성과 응용 (Synthesis of Nano Structured Silica and Carbon Materials and Their Application)

  • 박승규;김종윤;조완구
    • 대한화장품학회지
    • /
    • 제30권3호
    • /
    • pp.321-328
    • /
    • 2004
  • 주형합성법을 이용하여 메조기공(mesoporous pore)을 지닌 나노실리카 물질들과 나노카본볼의 대량생산법이 개발되었다. 암모니아, 트리메틸아민, 아세트알데히드 그리고 메틸메르캅탄과 같은 악취 물질들이 마크로기공 코어-메조기공 쉘(macro-porous core/mesoporous shell) 구조체인 나노카본볼에 흡착되는 현상이 상업용 탈취제인 활성탄과 비교 조사되었다. 나노카본볼에서의 악취의 흡착 및 분해는 활성탄에 비해 우수하게 관측되었고 촉매가 나노카본볼 내부에 첨착되면 더욱 악취 분해 특성이 증가되었다. 나노카본볼의 우수한 흡착 및 분해 특성을 이해하기 위해 물리화학적 특성인 균일한 기공, 넓은 표면적, 큰 기공 부피에 관한 기공 특성과 악취의 분해 현상이 연구되었다. 이러한 나노카본볼은 탈취제 분야에서 많은 응용성이 있을 것으로 전망된다.

Influence of Hot Pressing on the Pore Structure of Nafion Electrolyte Membrane Investigated by 1H NMR

  • Jeonga, Soon-Yong;Han, Oc-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1559-1562
    • /
    • 2009
  • The influence of hot pressing on the pore structures of Nafion membranes was investigated by observing the Nafion before and after hot pressing with $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The freezing point depression and chemical shift data of water in the Nafion indicated the presence of two different pore size ranges in Nafion. Hot pressing mainly reduced the sizes and number of the big pores. The reduction of water uptake and proton conductivity after hot pressing was explained by this variation of pore size and number. We demonstrated the potential application of chemical shift data and NMR cryoporometry experiments to measure the relative pore sizes, on a nano scale, and numbers.