• 제목/요약/키워드: nano template

검색결과 167건 처리시간 0.024초

나노 구조의 패턴을 갖는 n-type GaN 기판을 이용한 380 nm UV-LED의 광 추출 효율 개선 (Improvement in Light Extraction Efficiency of 380 nm UV-LED Using Nano-patterned n-type Gan Substrate)

  • 백광선;조민성;이영곤;;송영호;김승환;김재관;전성란;이준기
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.273-276
    • /
    • 2011
  • Ultraviolet (UV) light emitting diodes (LEDs) were grown on a patterned n-type GaN substrate (PNS) with 200 nm silicon-di-oxide (SiO2) nano pattern diameter to improve the light output efficiency of the diodes. Wet etched self assembled indium tin oxide (ITO) nano clusters serve as a dry etching mask for converting the SiO2 layer grown on the n-GaN template into SiO2 nano patterns by inductively coupled plasma etching. PNS is obtained by n-GaN regrowth on the SiO2 nano patterns and UV-LEDs were fabricated using PNS as a template. Two UV-LEDs, a reference LED without PNS and a 200 nm PNS UV-LEDs were fabricated. Scanning Electron microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Photoluminescence (PL) and Light output intensity- Input current- Voltage (L-I-V) characteristics were used to evaluate the ITO-$SiO_2$ nanopattern surface morphology, threading dislocation propagation, PNS crystalline property, PNS optical property and UVLED device performance respectively. The light out put intensity was enhanced by 1.6times@100mA for the LED grown on PNS compared to the reference LED with out PNS.

고세장비 플라스틱 나노헤어 성형에 관한 연구 (A study on high aspect ratio of plastic nano hair molding)

  • 김태훈;유영은;서영호;이학주;박영우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.471-472
    • /
    • 2006
  • High aspect ratio of nano hairs on a plastic substrate is molded using thermoplstic materials including COC, PP, PC and PMMA. As a template for molding nano hairs, AAO membrane is adopted, which is 60um thick and 13mm in diameter. This membrane has about 109 of through-holes of which diameter is around 200nm. This AAO membrane and the pellet of materials are stacked in the mold and pressed to mold after heating up to be melted. The AAO membrane is removed using KOH to obtain the molded nano hairs. As a result, the diameter of the molded hairs is around 200nm and the length is $2um{\sim}60um$ depending on the molding conditions and materials.

  • PDF

고세장비 나노 헤어 성형 및 응용 (Molding of High Aspect Ratio Nano-Hair Array and Its Applications)

  • 유영은;김태훈;서영호;최두선;이학주;김완두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.113-116
    • /
    • 2006
  • Some nano hair systems in the nature are found to show excellent adhesive characteristic, which is called dry adhesive, and synthetic nano hairs to mimic these adhesiveness are believed to have many applications. To develop a practical synthetic dry adhesive system, we mold nano hairs on plastic substrates using thermoplstic materials including COC, PP, PC and PMMA. and estimate the moldability and the adhesive characteristic. As a template for molding nano hairs, AAO membrane is first adopted, which is 60um thick and 13mm in diameter. This membrane has about a billion of through-holes of which diameter is around 200nm. This AAO membrane and the pellet of materials are stacked in the mold and pressed to mold after heating up to be melted. The AAO membrane is removed using KOH to obtain the molded nano hairs. As a result, the diameter of the molded hairs is around 200nm and the length is $2um{\sim}60um$ depending on the molding conditions and materials. The molded nano hair substrates is estimated to show much better adhesive characteristic than a substrate without nano hairs.

  • PDF

급속열처리를 통한 알루미나 나노 템플레이트의 기공 균일도 개선에 관한 연구 (A Study on Improved Pore Uniformity of Nano Template using the Rapid Thermal Anneal)

  • 김동희;김진광;권오대;양계준;이재형;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.189-194
    • /
    • 2006
  • Ordered nanostructure materials have received attention due to their unique physical properties and potential applications in electronics, mechanics and optical devices. To actualize most of the proposed applications, it is quite important to obtain highly ordered nanostructure arrays. The well-aligned nanostructure can be achieved by synthesizing nanostructure material in the highly ordered template. To get well-aligned pore array and reduce process time, rapid thermal anneal by an IR lamp was employed in vacuum state at $500^{\circ}C$ for 2 hour. The pore array is comparable to a template annealed in vacuum furnace at $500^{\circ}C$ for 30 hours. The well-fabricated AAO template has the mean pore diameter of 70 nm, the barrier layer thickness of 25 nm, the pore depth of $9{\mu}m$, and the pore density of higher than $1.2{\times}10^{10}cm^{-2}$.

Synthesis of Nanoporous Carbon as a Gas Adsorbent by Reverse Replication Process of Silica Template

  • Cho, Churl-Hee;Kim, Joon-Soo;Kim, Hong-Soo;Ahn, Young-Soo;Han, Moon-Hee;Yoo, Jong-Sung
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.519-524
    • /
    • 2003
  • Porous carbon with high surface area and pore volume was prepared by a reverse replication process and its toluene equilibrium adsorption behavior was investigated. The preparation process of the porous carbon was composed of fellowing sub-processes in series: synthesis and template preparation of silica gel, impregnation and polymerization of DVB monomer in silica template, carbonization of DVB polymer in a silica-polymer composite, and HF-assisted selective etching of silica in carbon-silica composite. The prepared porous carbon was nano porous and had ultrahigh specific surface area (2007 ㎡/g) and large pore volume (3.07 ㎤/g). The nanoporous carbon showed rapid toluene adsorption rate and good toluene adsorption capacity, compared with a commercial Y-type zeolite. In the present study, a reverse replication process to prepare nanoporous carbons will be introduced and its application potential as a gas adsorbent will be discussed.

나노템플레이트 표면처리를 통한 나노패턴이 형성된 PDMS 탄성 스탬프 몰드 제작 (Fabrication of Nanopatterned PDMS Elastic Stamp Mold Using Surface Treatment of Nanotemplate)

  • 박용민;서상현;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제24권1호
    • /
    • pp.38-42
    • /
    • 2015
  • Polydimethylsiloxane (PDMS) is a widely used material for replicating micro-structures because of its transparency, deformability, and easy fabrication. At the nanoscale, however, it is hard to fill a nanohole template with uncured PDMS. This paper introduces several simple methods by changing the surface energy of a nanohole template and PDMS elastomer for replicating 100nm-scale structures. In the case of template, pristine anodic aluminum oxide (AAO), hydrophobically treated AAO, and hydrophillically treated AAO are used. For the surface energy change of the PDMS elastomer, a hydrophilic additive and dilution solvent are added in the PDMS prepolymer. During the molding process, a simple casting method is used for all combinations of the treated template and modified PDMS. The nanostructured PDMS surface was investigated with a scanning electron microscope after the molding process for verification.

급속열처리를 통한 알루미나 나노템플릿의 기공 균일도 개선에 관한 연구 (A Study on Improved Pore Uniformity of Nano Template Using the Rapid Thermal Processor)

  • 김동희;김진광;권오대;양계준;이재형;임동건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.637-638
    • /
    • 2005
  • AAO templates were fabricated using a two-step anodization process with pretreatment such as electro polishing and annealing. To reduce process time and get well-aligned pore array, rapid thermal processor by an halogen lamp was employed in vacuum state at $500^{\circ}C$ for various time. The pore array of AAO template annealed at $500^{\circ}C$ for 2 h is comparable to a template annealed in conventional furnace at $500^{\circ}C$ for 30 h. The well-fabricated AAO template has the mean pore diameter of 70 nm, the barrierlayer thickness of 25 nm, and the pore depth of $9{\mu}m$. And the pore density can be as high as $2.0\times10^{10}cm^{-2}$.

  • PDF

Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정 (Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal)

  • 김정식;김범준
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.