• Title/Summary/Keyword: nano sheet

Search Result 246, Processing Time 0.028 seconds

Synthesis of graphene nano-sheet without catalysts and substrates using fullerene and spark plasma sintering process

  • Jun, Tae-Sung;Park, No-Hyung;So, Dea-Sup;Lee, Joon-Woo;Lim, Hak-Sang;Ham, Heon;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.27-30
    • /
    • 2013
  • Catalyst-free graphene nano-sheets without substrates have been synthesized using fullerene and a high direct current (dc) pulse in the spark plasma sintering (SPS) process. Graphene nano-sheets were synthesized directly in the gas phase of carbon atoms which are generated from fullerene at a temperature of $600^{\circ}C$. Characterization has been carried out by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD).

Partially Dry-Transferred Graphene Electrode with Zinc Oxide Nanopowder and Its Application on Organic Solar Cells (ZnO 나노 분말 코팅 기반 건식전사 그래핀 전극 제작 및 유기태양전지 응용)

  • Jo, Yeongsu;Woo, Chae Young;Hong, Soon Kyu;Lee, Hyung Woo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.305-310
    • /
    • 2020
  • In this study, partially dry transfer is investigated to solve the problem of fully dry transfer. Partially dry transfer is a method in which multiple layers of graphene are dry-transferred over a wet-transferred graphene layer. At a wavelength of 550 nm, the transmittance of the partially dry-transferred graphene is seen to be about 3% higher for each layer than that of the fully dry-transferred graphene. Furthermore, the sheet resistance of the partially dry-transferred graphene is relatively lower than that of the fully dry-transferred graphene, with the minimum sheet resistance being 179 Ω/sq. In addition, the fully dry-transferred graphene is easily damaged during the solution process, so that the performance of the organic photovoltaics (OPV) does not occur. In contrast, the best efficiency achievable for OPV using the partially dry-transferred graphene is 2.37% for 4 layers.

Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells

  • Ozguldez, Hatice O.;Cha, Junghwa;Hong, Yoonmi;Koh, Ilkyoo;Kim, Pilnam
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.337-345
    • /
    • 2018
  • Background: Human mesenchymal stem cells (hMSCs) are, due to their pluripotency, useful sources of cells for stem cell therapy and tissue regeneration. The phenotypes of hMSCs are strongly influenced by their microenvironment, in particular the extracellular matrix (ECM), the composition and structure of which are important in regulating stem cell fate. In reciprocal manner, the properties of ECM are remodeled by the hMSCs, but the mechanism involved in ECM remodeling by hMSCs under topographical stimulus is unclear. In this study, we therefore examined the effect of nanotopography on the expression of ECM proteins by hMSCs by analyzing the quantity and structure of the ECM on a nanogrooved surface. Methods: To develop the nanoengineered, hMSC-derived ECM, we fabricated the nanogrooves on a coverglass using a UV-curable polyurethane acrylate (PUA). Then, hMSCs were cultivated on the nanogrooves, and the cells at the full confluency were decellularized. To analyze the effect of nanotopography on the hMSCs, the hMSCs were re-seeded on the nanoengineered, hMSC-derived ECM. Results: hMSCs cultured within the nano-engineered hMSC-derived ECM sheet showed a different pattern of expression of ECM proteins from those cultured on ECM-free, nanogrooved surface. Moreover, hMSCs on the nano-engineered ECM sheet had a shorter vinculin length and were less well-aligned than those on the other surface. In addition, the expression pattern of ECM-related genes by hMSCs on the nanoengineered ECM sheet was altered. Interestingly, the expression of genes for osteogenesis-related ECM proteins was downregulated, while that of genes for chondrogenesis-related ECM proteins was upregulated, on the nanoengineered ECM sheet. Conclusions: The nanoengineered ECM influenced the phenotypic features of hMSCs, and that hMSCs can remodel their ECM microenvironment in the presence of a nanostructured ECM to guide differentiation into a specific lineage.

Graphene Based Nano-electronic and Nano-electromechanical Devices

  • Lee, Sang-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.13-13
    • /
    • 2011
  • Graphene based nano-electronic and nano-electromechanical devices will be introduced in this presentation. The first part of the presentation will be covered by our recent results on the fabrication and physical properties of artificially twisted bilayer graphene. Thanks to the recently developed contact transfer printing method, a single layer graphene sheet is stacked on various substrates/nano-structures in a controlled manner for fabricating e.g. a suspended graphene device, and single-bilayer hybrid junction. The Raman and electrical transport results of the artificially twisted bilayer indicates the decoupling of the two graphene sheets. The graphene based electromechanical devices will be presented in the second part of the presentation. Carbon nanotube based nanorelay and A new concept of non-volatile memory based on the carbon nanotube field effect transistor together with microelectromechanical switch will be briefly introduced at first. Recent progress on the graphene based nano structures of our group will be presented. The array of graphene resonators was fabricated and their mechanical resonance properties are discussed. A novel device structures using carbon nanotube field effect transistor combined with suspended graphene gate will be introduced in the end of this presentation.

  • PDF

Effects of Plasma Treatment on Contact Resistance and Sheet Resistance of Graphene FET

  • Ra, Chang-Ho;Choi, Min Sup;Lee, Daeyeong;Yoo, Won Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.152-158
    • /
    • 2016
  • We investigated the effect of capacitively coupled Ar plasma treatment on contact resistance ($R_c$) and channel sheet resistance ($R_{sh}$) of graphene field effect transistors (FETs), by varying their channel length in the wide range from 200 nm to $50{\mu}m$ which formed the transfer length method (TLM) patterns. When the Ar plasma treatment was performed on the long channel ($10{\sim}50{\mu}m$) graphene FETs for 20 s, $R_c$ decreased from 2.4 to $1.15k{\Omega}{\cdot}{\mu}m$. It is understood that this improvement in $R_c$ is attributed to the formation of $sp^3$ bonds and dangling bonds by the plasma. However, when the channel length of the FETs decreased down to 200 nm, the drain current ($I_d$) decreased upon the plasma treatment because of the significant increase of channel $R_{sh}$ which was attributed to the atomic structural disorder induced by the plasma across the transfer length at the edge of the channel region. This study suggests a practical guideline to reduce $R_c$ using various plasma treatments for the $R_c$ sensitive graphene and other 2D material devices, where $R_c$ is traded off with $R_{sh}$.

Influence of a Glasses Frame Processing on the Properties of Eco-friendly Cellulose Acetate Sheet (친환경 셀룰로오스 아세테이트 판재의 안경테 가공 공정별 물성 특성 연구)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Go, Young Jun;Park, Dae Jin;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Purpose: For optimizing properties of final glasses frame, the aim of this study is to examine the correlation of processing conditions and properties of cellulose acetate (CA) sheets through the investigation of properties of CA sheets prepared under processing steps. Methods: The properties of CA sheets were investigated in terms of different glasses frame processing conditions, bending process, barrel process, and ultrasonic cleaning process. CA sheets prepared through the sequential processing were examined by various analysis: gloss, mechanical properties, thermal properties. Results: After barrel process, hardness and tensile strength of CA sheet were increased. However, bending strength and impact strength were decreased. It is suggested the CA sheet had became rather stiff state (brittle). Also, in degradation temperature region of plasticizer, about 3% of reduction in plasticizer weight was confirmed upon TGA analysis. Conclusions: Glasses frame process, especially in the barrel process have a profound influence on the properties of CA sheet owing to reduction of total amount of plasticizer.

Preparation of Eco-friendly and High Strength Paper for Viscose Rayon Yarn (친환경 고강도 인견사용 종이 제조)

  • Hwang, Sung-Jun;Kim, Hyoung-Jin;Bae, Paek-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.154-163
    • /
    • 2015
  • Because of acute or chronic intoxication by carbon disulfide, viscose rayon industry is strictly subjected to environment regulatory approval. Recently, non-wood fibers are frequently considered as a raw materials for the manufacture of specialty paper for the higher physical strength and functionality. Among the non-wood fibers, hemp bast fiber is one of the most widely used materials in viscose rayon yarn industries. In this study, the handsheet for manufacturing the viscose rayon yarn was prepared with wood pulp fibers and hemp bast fibers. The proper mixing ratio of wood fibers and hemp bast fibers with dry-strength agent and nano-celluloses was analysed in terms of physical and mechanical strength of sheet for viscose rayon yarn. The papermaking conditions for high mechanical strength of sheet were obtained by mixing the SwBKP and HwBKP fibers with freeness level of 200 mL CSF. The dual polymer system by controlling the addition ratio of PVAm and anionic PAM was also important. The addition of nano-cellulose into wet-end furnishes increased the physical strength of sheet, and improved the paper structure for the production of viscose rayon yarn.

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.

Development of Nano Convergence Films Using a Roll-to-Roll Coating System

  • Hwang, Joong Kook;Chang, Sang-Mok;Shin, Hoon-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.168-171
    • /
    • 2016
  • There has been growing interest and rapid development in transparent electrode films, which are flexible and light and used in mobile, simple information, and electronic devices, and based on recent advancements in nano technology, information technology, and display technology. In particular, studies on developing such films with both high conductivity and high transmittance of visible rays are highly in demand for commercialization. In this study, transparent electrode films were developed for IT using micro patterns that show sheet resistance less than 10 Ω/□, adhesive strength more than 98%, and light transmittance more than 90%. The results of applying a surface emission gradient minimization (Honey Comb) technology to the films was the verification of the sheet resistance, adhesive strength, and light transmittance satisfying the target level of this study through Imprinting and Remolding processes.

The Characteristic Changes of Electromagnetic Wave Absorption in Fe-based Nanocrystalline P/M Sheet by the Additions of BaTiO3 Powder and Dispersant (BaTiO3 분말과 분산제 첨가에 따른 Fe계 나노결정 P/M시트의 전자파흡수 특성변화)

  • Kim, Mi-Rae;Cho, Hyeon-Jeong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.53-57
    • /
    • 2008
  • The amorphous $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was pulverized using a jet mill and an attrition mill to get flake-shaped powder. The flake powder was mixed with dielectric $BaTiO_3$ powder and its dispersant to increase the permittivity. The powders covered with dielectric powders and its dispersant were mixed with a binder and a solvent and then tape-cast to form sheets. The absorbing properties of the sheets were measured to investigate the roles of the dielectric powder and its dispersant. The results showed that the addition of $BaTiO_3$ powders and its dispersant improved the absorbing properties of the sheets noticeably. The powder sheet mixed with 5 wt% of $BaTiO_3$ powder and 1 wt% of dispersant showed the best electromagnetic wave absorption rate because of the increase of the permittivity and the electrical resistance.