• Title/Summary/Keyword: nano plate

Search Result 319, Processing Time 0.029 seconds

Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method

  • Singh, Piyush P.;Azam, Mohammad S.
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.25-42
    • /
    • 2021
  • In this article, the vibration behavior of embedded Functionally Graded Nanoplate (FGNP) employing nonlocal Kirchhoff's plate theory has been investigated under hygrothermal environment. The FGNP is considered to be supported by Winkler-Pasternak foundation. The Eringen's differential theory is used for size effect on the vibration of the FGNP. Rayleigh-Ritz method with orthogonal polynomials are employed for the governing equations and edge constraints. The advantage of this method is that it overcomes all the drawbacks of edge constraints and can easily handle any combinations of mixed edge constraints. The coefficients viz. moisture expansion, thermal expansion and elastic coefficients are considered to be transversely graded across the FGNP. The similarity of the calculated natural frequencies is examined with the previous research, and a good concurrency is seen. The objective of this article is to analyze the parameters' effect on the nondimensionalized frequency of embedded FGNP under hygrothermal environment subjected to all possible edge constraints. For this, uniform and linear rise of temperature and moisture concentration are considered. The study highlights that the nonlocal effect is pronounced for higher modes. Moreover, the effect of the Pasternak modulus is seen to be prominent compared to the Winkler modulus on non dimensionalized frequencies of FGNP.

Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory

  • Cuong-Le, Thanh;Nguyen, Khuong D.;Le-Minh, Hoang;Phan-Vu, Phuong;Nguyen-Trong, Phuoc;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.441-455
    • /
    • 2022
  • This study explores the linear and nonlinear solutions of sigmoid functionally graded material (S-FGM) nanoplate with porous effects. A size-dependent numerical solution is established using the strain gradient theory and isogeometric finite element formulation. The nonlinear nonlocal strain gradient is developed based on the Reissner-Mindlin plate theory and the Von-Karman strain assumption. The sigmoid function is utilized to modify the classical functionally graded material to ensure the constituent volume distribution. Two different patterns of porosity distribution are investigated, viz. pattern A and pattern B, in which the porosities are symmetric and asymmetric varied across the plate's thickness, respectively. The nonlinear finite element governing equations are established for bending analysis of S-FGM nanoplates, and the Newton-Raphson iteration technique is derived from the nonlinear responses. The isogeometric finite element method is the most suitable numerical method because it can satisfy a higher-order derivative requirement of the nonlocal strain gradient theory. Several numerical results are presented to investigate the influences of porosity distributions, power indexes, aspect ratios, nonlocal and strain gradient parameters on the porous S-FGM nanoplate's linear and nonlinear bending responses.

Synthesis and Evaluation of Ecofriendly Nontoxic Cleaning Agents (무독성 친환경 세정제의 합성 및 평가에 관한 연구)

  • Kim, Jong Cheon;Ryu, Young;Hong, Yeon Heui;Kim, Seok Chan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.548-551
    • /
    • 2014
  • In order to reduce toxicity on the human body, four new cleaning agents (1-4) containing ester and ether functionalities have been invented. The synthesized cleaning agents's physical properties, biodegradabilities, and $LD_{50}$ values, which were conducted by Korea Testing Certification Institute by using standard method, showed excellent values. A specimen for cleaning ability was prepared by cutting in $60{\times}40mm$ size of stainless steel plate. The surface of the above specimens was treated with four different kinds of contaminants, such as cutting oil, anti-rust oil, drawing oil, and lubricating oil. Contaminated specimens were then immersed in compounds (1-4) for 1 to 5 minutes to dissolve oil in the cleaning agent. The data indicate that all compounds (1-4) exhibit good cleaning ability toward four contaminant oils. It is also confirmed that these compounds can be applicable to various industrial cleaning fields as nontoxic and biodegradable cleaning agents because of their excellent biodegradabilities and $LD_{50}$ values.

Synthesis and Evaluation of New Nonflammable Cleaning Agents (난연성 세정제의 합성 및 평가에 관한 연구)

  • Kim, Ah Na;Yu, Young;Kim, Seok Chan
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.184-188
    • /
    • 2013
  • To increase flash point which is related to flammability, seven unprecedented new cleaning agents containing fluoride atoms have been invented. These newly synthesized cleaning agents's physical properties which were conducted by Korea Institute of Petroleum Management by using a standard method showed excellent values. Particularly, flash point of newly synthetic cleaning agents is more higher than that of fluoride free compound. A specimen for cleaning ability was prepared by cutting in $60mm{\times}40mm$ size of stainless steel plate. The surface of the above specimens was applied with four kinds of contaminants, such as paraffin based drawing oil, flux abietic acid, water-insoluble cutting oil, and lubricating oil. Contaminated specimens were immersed in new compounds (1-7) for 1 to 5 minutes to dissolve oil in the cleaning agent. Although the data indicate that all compounds (1-7) exhibit lower cleaning ability toward cutting oil, it is observed that in the case of the present study more than 80% of pollutants on the surface were almost removed within 5 minutes.

Direct-Write Fabrication of Solid Oxide Fuel Cell by Robo-Dispensing (로보 디스펜싱을 이용하여 직접묘화방식으로 제조된 고출력 소형 고체산화물 연료전지)

  • Kim, Yong-Bum;Moon, Jooho;Kim, Joosun;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.425-431
    • /
    • 2005
  • Line Shaped Solid Oxide Fuel Cell (SOFC) with multilayered structure has been fabricated via direct-writing process. The cell is electrolyte of Ni-YSZ cermet anode, YSZ electrolyte and LSM cathode. They were processed into pastes for the direct writing process. Syringe filled with each electrode and electrolyte paste was loaded into the computer-controlled robe-dispensing machine and the paste was dispensed through cylindrical nozzle of 0.21 mm in diameter under the air pressure of 0.1 tow onto a moving plate with 1.22 mm/s. First of all, the anode paste was dispensed on the PSZ porous substrate, and then the electrolyte paste was dispensed. The anode/electrolyte and the PSZ substrate were co-fired at $1350^{\circ}C$ in air atmosphere for 3 h. The cathode layer was similarly dispensed and sintered at $1200^{\circ}C$ for 1 h. All the electrode/electrolyte lines were visually aligned during the direct writing process. The effective reaction area of fabricated SOFC was $0.03 cm^2$, and the thickness of anode, electrolyte and cathode was 20 $\mu$m, 15 $\mu$m, and 10 $\mu$m, respectively. The single line-shaped SOFC fabricated by direct-writing process exhibited OCV of 0.95 V and maximum power density of $0.35W/cm^2$ at $810^{\circ}C$.

Crystallographic Effects of Anode on the Mechanical Properties of Electrochemically Deposited Copper Films (아노드의 결정성에 따른 전기도금 구리박막의 기계적 특성 연구)

  • Kang, Byung-Hak;Park, Jieun;Park, Kangju;Yoo, Dayoung;Lee, Dajeong;Lee, Dongyun
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.714-720
    • /
    • 2016
  • We performed this study to understand the effect of a single-crystalline anode on the mechanical properties of as-deposited films during electrochemical deposition. We used a (111) single- crystalline Cu plate as an anode, and Si substrates with Cr/Au conductive seed layers were prepared for the cathode. Electrodeposition was performed with a standard 3-electrode system in copper sulfate electrolyte. Interestingly, the grain boundaries of the as-deposited Cu thin films using single-crystalline Cu anode were not distinct; this is in contrast to the easily recognizable grain boundaries of the Cu thin films that were formed using a poly-crystalline Cu anode. Tensile testing was performed to obtain the mechanical properties of the Cu thin films. Ultimate tensile strength and elongation to failure of the Cu thin films fabricated using the (111) single-crystalline Cu anode were found to have increased by approximately 52 % and 37 %, respectively, compared with those values of the Cu thin films fabricated using apoly-crystalline Cu anode. We applied ultrasonic irradiation during electrodeposition to disturb the uniform stream; we then observed no single-crystalline anode effect. Consequently, it is presumed that the single-crystalline Cu anode can induce a directional/uniform stream of ions in the electrolyte that can create films with smeared grain boundaries, which boundaries strongly affect the mechanical properties of the electrodeposited Cu films.

Preparation and Characterization of Microporous PVdF Membrane for Li-ion Rechargeable Battery (이차전지용 미세다공성 PVdF 분리막의 제조와 물성)

  • Nam, Sang-Yong;Yu, Dae-Hyun;Jeong, Mi-Ae;Rhim, Ji-Won;Byun, Hong-Sik;Jeong, Chul-Ho;Lee, Young-Moo;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.233-243
    • /
    • 2007
  • In this study, a separate. which is a microporous membrane based on poly(vinylidene fluoride)(PVdF) was prepared by phase inversion method. Being prepared by dissolving the PVdF in the N,N'-dimethylformamide(DMF) with mechanical stirring, the homogenous casting solution was cast onto a clean glass plate. Pore size and porosity of the membranes were controlled by changing preparation condition. The highest porosity of the membrane was 78.6%. The mechanical property of the membrane was determined by using an universal testing machine(UTM). The morphology of the membrane was investigated by scanning electron microscopy(SEM). The cross-section of the membrane shows sponge-like small micro-pores.

THE EFFECT OF GINGIVAL GEL ON PERIODONTIUM IN MANDIBULAR FRACTURE PATIENTS APPLIED BY ARCH BAR (선부자를 적용한 하악골 골절환자의 치주조직에 기능성 치약이 미치는 영향)

  • Kim, Sun-Min;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.2
    • /
    • pp.125-130
    • /
    • 2009
  • For many years, intermaxillary fixation using arch bar has been operated in treatment of mandibular fracture patients. But it has many complications including injury of operators and assistants cause by wire, inflammation of periodontium. For that reasons alternatives are required; osteosynthesis technique using mini plate, intermaxillary fixation using IMF screws have been available. Treatment by arch bar fixation, however, is still valuable to treat craniomaxillary fracture patients. The purpose of this study is to know effect arch bar on periodontium and influence gingival gel on periodontium applied by arch bar. 40 mandibular fracture patients are monitored. 30 patients were applied by arch bar, 10 patients were not. And the former were classified by 3 categories; Nano vitamin and Mastic gel were applied to 10 patients respectively and any gingival gel was not used to 10 patients. Clinical attachment level, bleeding on probing and periodontal depth of each group were measured and compared before operation and on 2 weeks and 6 weeks after operation. Mann-Whitney U test was used to analyze result which leads to this conclusion. 1. Whether arch bar is applied or not, treatment of mandlbular fracture gave rise to gingivitis, but 6 weeks after operation, gingivitis is restored to the same level as the state before operation. 2. More severe gingivitis appeared when arch bar is applied to mandibular fracture than when it is not. 3. Both gingival gel used in this study can reduce gingivitis which can be caused by arch bar. 4. In this study, Mastic gel is more effective for prevent gingival inflammation cause by arch bar than nano vitamin. In regard to this result, gingivitis is considered to be available because it is reversible and does not induce periodontal disease. Gingival gel is regarded to be helpful for patients applied by arch bar to feel less discomfort.

Biaxial buckling analysis of sigmoid functionally graded material nano-scale plates using the nonlocal elaticity theory (비국소 탄성이론을 이용한 S형상 점진기능재료 나노-스케일 판의 이축 좌굴해석)

  • Lee, Won-Hong;Han, Sung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5930-5938
    • /
    • 2013
  • The sigmoid functionally graded mateiral(S-FGM) theory is reformulated using the nonlocal elatictiry of Erigen. The equation of equilibrium of the nonlocal elasticity are derived. This theory has ability to capture the both small scale effects and sigmoid function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported boundary conditions. Numerical solutions of biaxial buckling of nano-scale plates are presented using this theory to illustrate the effects of nonlocal theory and power law index of sigmoid function on buckling load. The relations between nonlocal and local theories are discussed by numerical results. Further, effects of (i) power law index, (ii) length, (iii) nonlocal parameter, (iv) aspect ratio and (v) mode number on nondimensional biaxial buckling load are studied. To validate the present solutions, the reference solutions are discussed.

Synthesis and Microstructure of Porous Al2O3 with Nano-Sized Cu Dispersions (나노크기 Cu 분산입자를 갖는 Al2O3 다공체의 제조 및 미세조직 특성)

  • Yoo, Ho-Suk;Kim, An-Gi;Hyun, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.67-71
    • /
    • 2013
  • Porous $Al_2O_3$ dispersed with nano-sized Cu was fabricated by freeze-drying process and solution chemistry method using Cu-nitrate. To prepare porous $Al_2O_3$, camphene was used as the sublimable vehicle. Camphene slurries with $Al_2O_3$ content of 10 vol% were prepared by milling at $50^{\circ}C$ with a small amount of oligomeric polyester dispersant. Freezing of the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled to $-25^{\circ}C$ while unidirectionally controlling the growth direction of the camphene. Pores were subsequently generated by sublimation of the camphene during drying in air for 48 h. The green body was sintered in a furnace at $1400^{\circ}C$ for 1 h. Cu particles were dispersed in porous $Al_2O_3$ by calcination and hydrogen reduction of Cu-nitrate. The sintered samples showed large pores with sizes of about $150{\mu}m$; these pores were aligned parallel to the camphene growth direction. Also, the internal walls of the large pores had relatively small pores due to the traces of camphene left between the concentrated $Al_2O_3$ particles on the internal wall. EDS analysis revealed that the Cu particles were mainly dispersed on the surfaces of the large pores. These results strongly suggest that porous $Al_2O_3$ with Cu dispersion can be successfully fabricated by freeze-drying and solution chemistry routes.