• 제목/요약/키워드: nano plate

검색결과 318건 처리시간 0.023초

Thermomechanical behavior of Macro and Nano FGM sandwich plates

  • Soumia, Benguediab;Tayeb, Kebir;Fatima Zohra, Kettaf;Ahmed Amine, Daikh;Abdelouahed, Tounsi;Mohamed, Benguediab;Mohamed A., Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • 제10권1호
    • /
    • pp.83-106
    • /
    • 2023
  • In this work, the static behavior of FGM macro and nano-plates under thermomechanical loading. Equilibrium equations are determined by using virtual work principle and local and non-local theory. The novelty of the current model is using a new displacement field with four variables and a warping function considering the effect of shear. Through this analysis, the considered sandwich FGM macro and nanoplates are a homogeneous core and P-FGM faces, homogeneous faces and an E-FGM core and finally P-FGM faces and an E-FGM core. The analytical solution is obtained by using Navier method. The model is verified with previous published works by other models and very close results are obtained within maximum 1% deviation. The numerical results are performed to present the influence of the various parameters such as, geometric ratios, material index as well as the scale parameters are investigated. The present model can be applicable for sandwich FG plates used in nuclear, aero-space, marine, civil and mechanical applications.

Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동 (Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method)

  • 김성준;임태섭;김봉구;손정훈;정연길
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.

소수성 양자점을 함유한 Poly-L-Lactic Acid film의 제조 및 세포흡수 연구 (Preparation and Cellular Uptake of Hydrophobic Quantum Dots Encapsulated in Poly-L-Lactic Acid Film)

  • 이지숙;우경자;정혜선
    • Journal of Pharmaceutical Investigation
    • /
    • 제39권1호
    • /
    • pp.1-6
    • /
    • 2009
  • To overcome the stability problem of hydrophilic quantum dot (Q-dot), cellular uptake of hydrophobic instead of hydrophilic Q-dot was studied in the hope to find a simple method to use Q-dot as a cellular imaging probe. Hydrophobic Q-dot and poly-L-lactic acid (PLLA) were co-dissolved in chloroform to prepare stable films. Due to the cellular compatibility of PLLA, adherent cells were cultured on the film to observe the degree of Q-dot uptake and cytotoxicity of the prepared films. The results show that Q-dots were absorbed into NIH3T3 and EMT6 cells. Cellular uptake was also observed when hydrophobic Q-dots were coated directly on a glass plate. PLLA/Q-dot film and Q-dot coated on glass plate did not show major cytotoxicity. In vivo tumor model was also used to show the uptake of Q-dot from the PLLA/Q-dot film to the tumor site.

미세 유체통로를 이용한 대면적 평판 구조의 부양에 관한 연구 (Study on the Micro Channel Assisted Release Process)

  • 김재흥;이준영;김용권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1924-1926
    • /
    • 2001
  • A novel wet release process ($\mu$ CARP - Micro Channel Assisted Release Process) for releasing an extreme large-area plate structure without etching hole is proposed and experimented. Etching holes in conventional process reduce a effective area and degrade an optical characteristics by a diffraction. In addition, as the area of a released structure increases, the stietion becomes more serious. The proposed process resolves these problems by the introduction of a micro fluidic channel beneath the structure which will be released. In this paper, a 5 mm${\times}$5mm-single crystal silicon plate structure was released by the proposed $\mu$CARP without etch holes on the structure. The variation in etching time with respect to the of the introduced micro channel is also examined. This process is expected to be beneficial for the actuator of a nano-scale data storage and the scanning mirror.

  • PDF

전자기력 조합에 기초한 평면 구동기를 이용한 자기 부상 방식 초정밀 스테이지 (Precision Stage Using A Novel Contact-Free Planar Actuator Based on Combination of Electromagnetic forces)

  • 정광석;백윤수
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1863-1872
    • /
    • 2001
  • In this Paper, we suggest the precision stage using a novel non-contact planar actuator that utilizes an interaction between an array type of air-core solenoids and permanent magnets. The former with axes arranged in the mutually orthogonal direction is fixed on the stator and the latter with the same polar direction is attached below the stage. The promising magnetic structure has little uncertainty such as hysteresis loss caused by ferromagnetic material, then it is simple to quantify the magnetic phenomenon. And all the magnetic forces are transmitted through narrow air-gap between the coil and the permanent magnet, therefore the structure can be highly compacted. Furthermore, the stage or plate can be perfectly isolated from the stator without any wire connection, leading to diminish the generating possibility of wear particles due to mechanical contact. Then. it is estimated that the proposed operating principle is very suitable for work requiring high accuracy and cleanness. or general-purpose nano stage. The main issues rebated to the plate driving are discussed here.

Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM

  • Arani, Ali Ghorbanpour;Kolahchi, Reza;Esmailpour, Masoud
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.787-800
    • /
    • 2016
  • The aim of the paper is to analyze nonlinear transverse vibration of an embedded piezoelectric plate reinforced with single walled carbon nanotubes (SWCNTs). The system in rested in a Pasternak foundation. The micro-electro-mechanical model is employed to calculate mechanical and electrical properties of nanocomposite. Using nonlinear strain-displacement relations and considering charge equation for coupling between electrical and mechanical fields, the motion equations are derived based on energy method and Hamilton's principle. These equations can't be solved analytically due to their nonlinear terms. Hence, differential quadrature method (DQM) is employed to solve the governing differential equations for the case when all four ends are clamped supported and free electrical boundary condition. The influences of the elastic medium, volume fraction and orientation angle of the SWCNTs reinforcement and aspect ratio are shown on frequency of structure. The results indicate that with increasing volume fraction of SWCNTs, the frequency increases. This study might be useful for the design and smart control of nano/micro devices such as MEMS and NEMS.

종이 물성에 따른 판형 전열교환기의 성능 (Performance of a Plate-Type Enthalpy Exchanger Made of Papers Having Different Properties)

  • 김내현;조진표;송길섭;김동훈
    • 설비공학논문집
    • /
    • 제20권8호
    • /
    • pp.547-555
    • /
    • 2008
  • The effects of paper properties such as density, air permeability, water vapor transmission rate on the thermal performance of plate-type enthalpy exchanger were experimentally investigated. Papers having different properties were made from the same pulp by calendering or refining. Enthalpy exchanger samples were made from the papers, and were tested according to the standard test procedure (KS B 6879). Effective efficiencies were obtained, which accounted for the air leakage between supply and exhaust streams. Results showed that paper density affected the sensible heat transfer of the samples. Sensible heat transfer increased with density of the paper. It was also shown that effective efficiency of latent heat transfer was approximately the same independent of the samples, which suggests that papers made of the same pulp show similar water vapor transmission characteristics independent of the degree of calendering or refining. Best performance was obtained for the sample having highest paper density and moderate water vapor transmission ratio.

Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM

  • Shokravi, Maryam
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.327-346
    • /
    • 2017
  • Laminated plates have many applications in different industrials. Buckling analysis of these structures with the nano-scale reinforcement has not investigated yet. However, buckling analysis of embedded laminated plates with nanocomposite layers is studied in this paper. Considering the single-walled carbon nanotubes (SWCNTs) as reinforcement of layers, SWCNTs agglomeration effects and nonlinear analysis using numerical method are the main contributions of this paper. Mori-Tanaka model is applied for obtaining the equivalent material properties of structure and considering agglomeration effects. The elastic medium is simulated by spring and shear constants. Based on first order shear deformation theory (FSDT), the governing equations are derived based on energy method and Hamilton's principle. Differential quadrature method (DQM) is used for calculating the buckling load of system. The effects of different parameters such as the volume percent of SWCNTs, SWCNTs agglomeration, number of layers, orientation angle of layers, elastic medium, boundary conditions and axial mode number of plate on the buckling of the structure are shown. Results indicate that increasing volume percent of SWCNTs increases the buckling load of the plate. Furthermore, considering agglomeration effects decreases the buckling load of system. In addition, it is found that the present results have good agreement with other works.

Hygro-thermal effects on wave dispersion responses of magnetostrictive sandwich nanoplates

  • Ebrahimi, Farzad;Dabbagh, Ali;Tornabene, Francesco;Civalek, Omer
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.157-167
    • /
    • 2019
  • In this paper, a classical plate model is utilized to formulate the wave propagation problem of magnetostrictive sandwich nanoplates (MSNPs) while subjected to hygrothermal loading with respect to the scale effects. Herein, magnetostriction effect is considered and controlled on the basis of a feedback control system. The nanoplate is supposed to be embedded on a visco-Pasternak substrate. The kinematic relations are derived based on the Kirchhoff plate theory; also, combining these obtained equations with Hamilton's principle, the local equations of motion are achieved. According to a nonlocal strain gradient theory (NSGT), the small scale influences are covered precisely by introducing two scale coefficients. Afterwards, the nonlocal governing equations can be derived coupling the local equations with those of the NSGT. Applying an analytical solution, the wave frequency and phase velocity of propagated waves can be gathered solving an eigenvalue problem. On the other hand, accuracy and efficiency of presented model is verified by setting a comparison between the obtained results with those of previous published researches. Effects of different variants are plotted in some figures and the highlights are discussed in detail.

Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method

  • Singh, Piyush P.;Azam, Mohammad S.
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.25-42
    • /
    • 2021
  • In this article, the vibration behavior of embedded Functionally Graded Nanoplate (FGNP) employing nonlocal Kirchhoff's plate theory has been investigated under hygrothermal environment. The FGNP is considered to be supported by Winkler-Pasternak foundation. The Eringen's differential theory is used for size effect on the vibration of the FGNP. Rayleigh-Ritz method with orthogonal polynomials are employed for the governing equations and edge constraints. The advantage of this method is that it overcomes all the drawbacks of edge constraints and can easily handle any combinations of mixed edge constraints. The coefficients viz. moisture expansion, thermal expansion and elastic coefficients are considered to be transversely graded across the FGNP. The similarity of the calculated natural frequencies is examined with the previous research, and a good concurrency is seen. The objective of this article is to analyze the parameters' effect on the nondimensionalized frequency of embedded FGNP under hygrothermal environment subjected to all possible edge constraints. For this, uniform and linear rise of temperature and moisture concentration are considered. The study highlights that the nonlocal effect is pronounced for higher modes. Moreover, the effect of the Pasternak modulus is seen to be prominent compared to the Winkler modulus on non dimensionalized frequencies of FGNP.